Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet

Abstract Background Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Laura A. Cox, Jeannie Chan, Prahlad Rao, Zeeshan Hamid, Jeremy P. Glenn, Avinash Jadhav, Vivek Das, Genesio M. Karere, Ellen Quillen, Kylie Kavanagh, Michael Olivier
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/027e176990914d9fa4b758efaea0c266
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:027e176990914d9fa4b758efaea0c266
record_format dspace
spelling oai:doaj.org-article:027e176990914d9fa4b758efaea0c2662021-12-05T12:17:14ZIntegrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet10.1186/s12864-021-08166-01471-2164https://doaj.org/article/027e176990914d9fa4b758efaea0c2662021-12-01T00:00:00Zhttps://doi.org/10.1186/s12864-021-08166-0https://doaj.org/toc/1471-2164Abstract Background Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. Results We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. Conclusions Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.Laura A. CoxJeannie ChanPrahlad RaoZeeshan HamidJeremy P. GlennAvinash JadhavVivek DasGenesio M. KarereEllen QuillenKylie KavanaghMichael OlivierBMCarticleHigh fructose dietIntegrated omicsTranscriptomicsProteomicsMetabolomicsmiRNABiotechnologyTP248.13-248.65GeneticsQH426-470ENBMC Genomics, Vol 22, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic High fructose diet
Integrated omics
Transcriptomics
Proteomics
Metabolomics
miRNA
Biotechnology
TP248.13-248.65
Genetics
QH426-470
spellingShingle High fructose diet
Integrated omics
Transcriptomics
Proteomics
Metabolomics
miRNA
Biotechnology
TP248.13-248.65
Genetics
QH426-470
Laura A. Cox
Jeannie Chan
Prahlad Rao
Zeeshan Hamid
Jeremy P. Glenn
Avinash Jadhav
Vivek Das
Genesio M. Karere
Ellen Quillen
Kylie Kavanagh
Michael Olivier
Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
description Abstract Background Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. Results We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. Conclusions Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.
format article
author Laura A. Cox
Jeannie Chan
Prahlad Rao
Zeeshan Hamid
Jeremy P. Glenn
Avinash Jadhav
Vivek Das
Genesio M. Karere
Ellen Quillen
Kylie Kavanagh
Michael Olivier
author_facet Laura A. Cox
Jeannie Chan
Prahlad Rao
Zeeshan Hamid
Jeremy P. Glenn
Avinash Jadhav
Vivek Das
Genesio M. Karere
Ellen Quillen
Kylie Kavanagh
Michael Olivier
author_sort Laura A. Cox
title Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
title_short Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
title_full Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
title_fullStr Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
title_full_unstemmed Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
title_sort integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet
publisher BMC
publishDate 2021
url https://doaj.org/article/027e176990914d9fa4b758efaea0c266
work_keys_str_mv AT lauraacox integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT jeanniechan integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT prahladrao integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT zeeshanhamid integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT jeremypglenn integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT avinashjadhav integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT vivekdas integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT genesiomkarere integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT ellenquillen integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT kyliekavanagh integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
AT michaelolivier integratedomicsanalysisrevealssirtuinsignalingiscentraltohepaticresponsetoahighfructosediet
_version_ 1718372055456415744