BIM-Based Pavement Management Tool for Scheduling Urban Road Maintenance
The latest advancements in road asphalt materials and construction technologies have increased the difficulty for engineers to select the appropriate pavement design solution with consideration of proper timing for maintenance planning. On the other hand, Building Information Modeling (BIM) tools al...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/028ca693d53e4d91bda70e02f973083e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The latest advancements in road asphalt materials and construction technologies have increased the difficulty for engineers to select the appropriate pavement design solution with consideration of proper timing for maintenance planning. On the other hand, Building Information Modeling (BIM) tools allow practitioners to efficiently store and manage large amounts of data, supporting decision making in road asphalt pavement design and management. The present work focused on the elaboration of a BIM-based maintenance analysis tool for the specific evaluation of several condition indicators and the selection of proper maintenance solutions designed to include alternative materials and advanced recycling technologies. A traditional BIM workflow was integrated with additional user-defined property sets to investigate the need for maintenance at the present date and predict the degradation curve of the condition indicators through the least square interpolation of time series of data. The analysis tool also provided the selection of available pavement alternatives from a library of designed solutions based on their compliance with project-specific constraints (maximum budget, minimum useful life, and availability of secondary raw materials and in-place recycling technologies). The proposed BIM tool aims to be a practical and dynamic way to integrate maintenance planning considerations into road pavement design, encouraging the use of digital tools in the road industry and ultimately supporting a pavement maintenance decision-making process oriented towards a circular economy. |
---|