Integrated space–frequency–time domain feature extraction for MEG-based Alzheimer’s disease classification
Abstract Magnetoencephalography (MEG) has been combined with machine learning techniques, to recognize the Alzheimer’s disease (AD), one of the most common forms of dementia. However, most of the previous studies are limited to binary classification and do not fully utilize the two available MEG mod...
Guardado en:
Autores principales: | Su Yang, Jose Miguel Sanchez Bornot, Ricardo Bruña Fernandez, Farzin Deravi, KongFatt Wong-Lin, Girijesh Prasad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/029afbddb6464c41975f8232c3136b33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
por: Jian Sun, et al.
Publicado: (2021) -
The Model of Makerspace Development Element and Performance Analysis Based on NVivo Classification
por: Yingyan Wang, et al.
Publicado: (2021) -
CT Imaging in the Diagnosis of Lung Injury of Organophosphorus Poisoning and Analysis of Its Correlation with Procalcitonin and C-Reactive Protein Levels
por: Wenwen Sun, et al.
Publicado: (2021) -
Simulation Analysis of the Evolution of Sustainable Operation of Transport Infrastructure Projects under Government Regulation Based on Prospect Theory and BP Neural Network
por: Chongsen Ma, et al.
Publicado: (2021) -
Application of Deep Learning in Financial Management Evaluation
por: Wenlei Shi, et al.
Publicado: (2021)