A model for predicting drug-disease associations based on dense convolutional attention network
The development of new drugs is a time-consuming and labor-intensive process. Therefore, researchers use computational methods to explore other therapeutic effects of existing drugs, and drug-disease association prediction is an important branch of it. The existing drug-disease association predictio...
Guardado en:
Autores principales: | Huiqing Wang, Sen Zhao, Jing Zhao, Zhipeng Feng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/029eeab8870949b59f8b66cf9f166132 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images
por: Zijian Wang, et al.
Publicado: (2021) -
Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network
por: Mariam Busaleh, et al.
Publicado: (2021) -
Remote Sensing Image Scene Classification Based on Global Self-Attention Module
por: Qingwen Li, et al.
Publicado: (2021) -
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
por: Weisheng Li, et al.
Publicado: (2021) -
Computing the Laplace transform and the convolution for more functions adjoined
por: Sudo,Takahiro
Publicado: (2015)