An exploratory computational analysis of dual degeneracy in mixed-integer programming
Dual degeneracy, i.e., the presence of multiple optimal bases to a linear programming (LP) problem, heavily affects the solution process of mixed integer programming (MIP) solvers. Different optimal bases lead to different cuts being generated, different branching decisions being taken and different...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/02acf5f02ecf4593a8b6c0599764c3ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:02acf5f02ecf4593a8b6c0599764c3ca |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:02acf5f02ecf4593a8b6c0599764c3ca2021-12-03T04:01:14ZAn exploratory computational analysis of dual degeneracy in mixed-integer programming2192-440610.1007/s13675-020-00130-zhttps://doaj.org/article/02acf5f02ecf4593a8b6c0599764c3ca2020-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2192440621001295https://doaj.org/toc/2192-4406Dual degeneracy, i.e., the presence of multiple optimal bases to a linear programming (LP) problem, heavily affects the solution process of mixed integer programming (MIP) solvers. Different optimal bases lead to different cuts being generated, different branching decisions being taken and different solutions being found by primal heuristics. Nevertheless, only a few methods have been published that either avoid or exploit dual degeneracy. The aim of the present paper is to conduct a thorough computational study on the presence of dual degeneracy for the instances of well-known public MIP instance collections. How many instances are affected by dual degeneracy? How degenerate are the affected models? How does branching affect degeneracy: Does it increase or decrease by fixing variables? Can we identify different types of degenerate MIPs? As a tool to answer these questions, we introduce a new measure for dual degeneracy: the variable–constraint ratio of the optimal face. It provides an estimate for the likelihood that a basic variable can be pivoted out of the basis. Furthermore, we study how the so-called cloud intervals—the projections of the optimal face of the LP relaxations onto the individual variables—evolve during tree search and the implications for reducing the set of branching candidates.Gerald GamrathTimo BertholdDomenico SalvagninElsevierarticle90C1090C1190C57Applied mathematics. Quantitative methodsT57-57.97Electronic computers. Computer scienceQA75.5-76.95ENEURO Journal on Computational Optimization, Vol 8, Iss 3, Pp 241-261 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
90C10 90C11 90C57 Applied mathematics. Quantitative methods T57-57.97 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
90C10 90C11 90C57 Applied mathematics. Quantitative methods T57-57.97 Electronic computers. Computer science QA75.5-76.95 Gerald Gamrath Timo Berthold Domenico Salvagnin An exploratory computational analysis of dual degeneracy in mixed-integer programming |
description |
Dual degeneracy, i.e., the presence of multiple optimal bases to a linear programming (LP) problem, heavily affects the solution process of mixed integer programming (MIP) solvers. Different optimal bases lead to different cuts being generated, different branching decisions being taken and different solutions being found by primal heuristics. Nevertheless, only a few methods have been published that either avoid or exploit dual degeneracy. The aim of the present paper is to conduct a thorough computational study on the presence of dual degeneracy for the instances of well-known public MIP instance collections. How many instances are affected by dual degeneracy? How degenerate are the affected models? How does branching affect degeneracy: Does it increase or decrease by fixing variables? Can we identify different types of degenerate MIPs? As a tool to answer these questions, we introduce a new measure for dual degeneracy: the variable–constraint ratio of the optimal face. It provides an estimate for the likelihood that a basic variable can be pivoted out of the basis. Furthermore, we study how the so-called cloud intervals—the projections of the optimal face of the LP relaxations onto the individual variables—evolve during tree search and the implications for reducing the set of branching candidates. |
format |
article |
author |
Gerald Gamrath Timo Berthold Domenico Salvagnin |
author_facet |
Gerald Gamrath Timo Berthold Domenico Salvagnin |
author_sort |
Gerald Gamrath |
title |
An exploratory computational analysis of dual degeneracy in mixed-integer programming |
title_short |
An exploratory computational analysis of dual degeneracy in mixed-integer programming |
title_full |
An exploratory computational analysis of dual degeneracy in mixed-integer programming |
title_fullStr |
An exploratory computational analysis of dual degeneracy in mixed-integer programming |
title_full_unstemmed |
An exploratory computational analysis of dual degeneracy in mixed-integer programming |
title_sort |
exploratory computational analysis of dual degeneracy in mixed-integer programming |
publisher |
Elsevier |
publishDate |
2020 |
url |
https://doaj.org/article/02acf5f02ecf4593a8b6c0599764c3ca |
work_keys_str_mv |
AT geraldgamrath anexploratorycomputationalanalysisofdualdegeneracyinmixedintegerprogramming AT timoberthold anexploratorycomputationalanalysisofdualdegeneracyinmixedintegerprogramming AT domenicosalvagnin anexploratorycomputationalanalysisofdualdegeneracyinmixedintegerprogramming AT geraldgamrath exploratorycomputationalanalysisofdualdegeneracyinmixedintegerprogramming AT timoberthold exploratorycomputationalanalysisofdualdegeneracyinmixedintegerprogramming AT domenicosalvagnin exploratorycomputationalanalysisofdualdegeneracyinmixedintegerprogramming |
_version_ |
1718373910688301056 |