Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation
Abstract Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in si...
Guardado en:
Autores principales: | Marta E. Polak, Chuin Ying Ung, Joanna Masapust, Tom C. Freeman, Michael R. Ardern-Jones |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/02cd986922db48bba0b3dc4129b8371e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Online Activation and Deactivation of a Petri Net Supervisor
por: Sadok Rezig, et al.
Publicado: (2021) -
Genomic programming of IRF4-expressing human Langerhans cells
por: Sofia Sirvent, et al.
Publicado: (2020) -
PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
por: Deepika Vatsa, et al.
Publicado: (2021) -
Trust-Based Petri Net Model for Fault Detection and Treatment in Automated Manufacturing Systems
por: Ebrahim Ali Alzalab, et al.
Publicado: (2021) -
Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident
por: Rino Bošnjak, et al.
Publicado: (2021)