Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method
As a pivotal technological foundation for smart home implementation, non-intrusive load monitoring is emerging as a widely recognized and popular technology to replace the sensors or sockets networks for the detailed household appliance monitoring. In this paper, a probability model framed ensemble...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/02cf742d438c4c388305f9120634ca31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | As a pivotal technological foundation for smart home implementation, non-intrusive load monitoring is emerging as a widely recognized and popular technology to replace the sensors or sockets networks for the detailed household appliance monitoring. In this paper, a probability model framed ensemble method is proposed for the target of robust appliance monitoring. Firstly, the non-intrusive load disaggregation-oriented ensemble architecture is presented. Then, dictionary learning model is utilized to formulate the individual classifier, while the sparse coding-based approach is capable of providing multiple solutions under greedy mechanism. Furthermore, a fully probabilistic model is established for combined classifier, where the candidate solutions are all labelled with probability scores and evaluated via two-stage decision-making. The proposed method is tested on both low-voltage network simulator platform and field measurement datasets, and the results show that the proposed ensemble method always guarantees an enhancement on the performance of non-intrusive load disaggregation. Besides, the proposed approach shows high flexibility and scalability in classification model selection. Therefore, by initializing the architecture and approach of ensemble method-based NILM, this work plays a pioneer role in using ensemble method to improve the robustness and reliability of non-intrusive appliance monitoring. |
---|