Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method
As a pivotal technological foundation for smart home implementation, non-intrusive load monitoring is emerging as a widely recognized and popular technology to replace the sensors or sockets networks for the detailed household appliance monitoring. In this paper, a probability model framed ensemble...
Guardado en:
Autores principales: | Yu Liu, Yan Wang, Yu Hong, Qianyun Shi, Shan Gao, Xueliang Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/02cf742d438c4c388305f9120634ca31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Enhanced Ensemble Approach for Non-Intrusive Energy Use Monitoring Based on Multidimensional Heterogeneity
por: Yu Liu, et al.
Publicado: (2021) -
Temporal feature adaptive non-intrusive load monitoring via unsupervised probability density evolution
por: Yu Liu, et al.
Publicado: (2021) -
NON-INTRUSIVE LOAD MONITORING: IMPLEMENTATION EFFECTS AND DISTRIBUTION PROSPECTS
por: P. S. Kuzmin
Publicado: (2020) -
Non-intrusive energy estimation using random forest based multi-label classification and integer linear programming
por: Yu Liu, et al.
Publicado: (2021) -
Real-Time Non-Intrusive Electrical Load Classification Over IoT Using Machine Learning
por: Md. Tanvir Ahammed, et al.
Publicado: (2021)