SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
Semantic segmentation of remote sensing images is always a critical and challenging task. Graph neural networks, which can capture global contextual representations, can exploit long-range pixel dependency, thereby improving semantic segmentation performance. In this paper, a novel self-constructing...
Guardado en:
Autores principales: | Wenjie Zi, Wei Xiong, Hao Chen, Jun Li, Ning Jing |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/02f707f793094988899e14798dc514e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Bo Zhong, et al.
Publicado: (2021) -
Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model
por: Yubin Lan, et al.
Publicado: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021) -
Attention Mask R-CNN for Ship Detection and Segmentation From Remote Sensing Images
por: Xuan Nie, et al.
Publicado: (2020)