Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data

<p>Wildfires are increasing in size across the western US, leading to increases in human smoke exposure and associated negative health impacts. The impact of biomass burning (BB) smoke, including wildfires, on regional air quality depends on emissions, transport, and chemistry, including oxida...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Z. C. J. Decker, M. A. Robinson, K. C. Barsanti, I. Bourgeois, M. M. Coggon, J. P. DiGangi, G. S. Diskin, F. M. Flocke, A. Franchin, C. D. Fredrickson, G. I. Gkatzelis, S. R. Hall, H. Halliday, C. D. Holmes, L. G. Huey, Y. R. Lee, J. Lindaas, A. M. Middlebrook, D. D. Montzka, R. Moore, J. A. Neuman, J. B. Nowak, B. B. Palm, J. Peischl, F. Piel, P. S. Rickly, A. W. Rollins, T. B. Ryerson, R. H. Schwantes, K. Sekimoto, L. Thornhill, J. A. Thornton, G. S. Tyndall, K. Ullmann, P. Van Rooy, P. R. Veres, C. Warneke, R. A. Washenfelder, A. J. Weinheimer, E. Wiggins, E. Winstead, A. Wisthaler, C. Womack, S. S. Brown
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/02f70af05f9e4872ba632c70b6749087
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>Wildfires are increasing in size across the western US, leading to increases in human smoke exposure and associated negative health impacts. The impact of biomass burning (BB) smoke, including wildfires, on regional air quality depends on emissions, transport, and chemistry, including oxidation of emitted BB volatile organic compounds (BBVOCs) by the hydroxyl radical (OH), nitrate radical (<span class="inline-formula">NO<sub>3</sub></span>), and ozone (<span class="inline-formula">O<sub>3</sub></span>). During the daytime, when light penetrates the plumes, BBVOCs are oxidized mainly by <span class="inline-formula">O<sub>3</sub></span> and OH. In contrast, at night or in optically dense plumes, BBVOCs are oxidized mainly by <span class="inline-formula">O<sub>3</sub></span> and <span class="inline-formula">NO<sub>3</sub></span>. This work focuses on the transition between daytime and nighttime oxidation, which has significant implications for the formation of secondary pollutants and loss of nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="f0add4bbe2151ecfa7cd944e28fa7e9e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16293-2021-ie00001.svg" width="85pt" height="13pt" src="acp-21-16293-2021-ie00001.png"/></svg:svg></span></span>) and has been understudied. We present wildfire plume observations made during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality), a field campaign involving multiple aircraft, ground, satellite, and mobile platforms that took place in the United States in the summer of 2019 to study both wildfire and agricultural burning emissions and atmospheric chemistry. We use observations from two research aircraft, the NASA DC-8 and the NOAA Twin Otter, with a detailed chemical box model, including updated phenolic mechanisms, to analyze smoke sampled during midday, sunset, and nighttime. Aircraft observations suggest a range of <span class="inline-formula">NO<sub>3</sub></span> production rates (0.1–1.5 <span class="inline-formula">ppbv h<sup>−1</sup></span>) in plumes transported during both midday and after dark. Modeled initial instantaneous reactivity toward BBVOCs for <span class="inline-formula">NO<sub>3</sub></span>, OH, and <span class="inline-formula">O<sub>3</sub></span> is 80.1 %, 87.7 %, and 99.6 %, respectively. Initial <span class="inline-formula">NO<sub>3</sub></span> reactivity is 10–<span class="inline-formula">10<sup>4</sup></span> times greater than typical values in forested or urban environments, and reactions with BBVOCs account for <span class="inline-formula">&gt;97</span> % of <span class="inline-formula">NO<sub>3</sub></span> loss in sunlit plumes (<span class="inline-formula"><i>j</i>NO<sub>2</sub></span> up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="59pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="75fd83c3fc1e7202c7ef5bff89e9ecd3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16293-2021-ie00002.svg" width="59pt" height="14pt" src="acp-21-16293-2021-ie00002.png"/></svg:svg></span></span>), while conventional photochemical <span class="inline-formula">NO<sub>3</sub></span> loss through reaction with NO and photolysis are minor pathways. Alkenes and furans are mostly oxidized by OH and <span class="inline-formula">O<sub>3</sub></span> (11 %–43 %, 54 %–88 % for alkenes; 18 %–55 %, 39 %–76 %, for furans, respectively), but phenolic oxidation is split between <span class="inline-formula">NO<sub>3</sub></span>, <span class="inline-formula">O<sub>3</sub></span>, and OH (26 %–52 %, 22 %–43 %, 16 %–33 %, respectively). Nitrate radical oxidation accounts for 26 %–52 % of phenolic chemical loss in sunset plumes and in an optically thick plume. Nitrocatechol yields varied between 33 % and 45 %, and <span class="inline-formula">NO<sub>3</sub></span> chemistry in BB plumes emitted late in the day is responsible for 72 %–92 % (84 % in an optically thick midday plume) of nitrocatechol formation and controls nitrophenolic formation overall. As a result, overnight nitrophenolic formation pathways account for <span class="inline-formula">56 <i>%</i>±2 <i>%</i></span> of <span class="inline-formula">NO<sub><i>x</i></sub></span> loss by sunrise the following day. In all but one overnight plume we modeled, there was remaining <span class="inline-formula">NO<sub><i>x</i></sub></span> (13 %–57 %) and BBVOCs (8 %–72 %) at sunrise.</p>