Estimating Optimal Number of Compressively Sensed Bands for Hyperspectral Classification via Feature Selection
Compressive sensing (CS) has received considerable interest in hyperspectral sensing. Recent articles have also exploited the benefits of CS in hyperspectral image classification (HSIC) in the compressively sensed band domain (CSBD). However, on many occasions, the requirement of full bands is not n...
Guardado en:
Autores principales: | C. J. Della Porta, Chein-I Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0300165fe8e54dc8aea522834b537f60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Light-YOLOv4: An Edge-Device Oriented Target Detection Method for Remote Sensing Images
por: Xiaojie Ma, et al.
Publicado: (2021) -
Predicting the Lossless Compression Ratio of Remote Sensing Images With Configurational Entropy
por: Xinghua Cheng, et al.
Publicado: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021) -
Design and Analysis of CubeSat Microwave Radiometer Constellations to Observe Temporal Variability of the Atmosphere
por: Yuriy V. Goncharenko, et al.
Publicado: (2021) -
Cross-Bands Information Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral Data Visualization
por: Iulia Coca Neagoe, et al.
Publicado: (2021)