Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.

<h4>Background</h4>Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) S. aureus strains are well recognized as posing substantial problems in treating ocular infections. S. aureus has a vast array of virulence factors, including superantigens and enterotoxin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Min Lu, Jean-Marie Parel, Darlene Miller
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/030783a10a044d22a9fb614b5463995d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:030783a10a044d22a9fb614b5463995d
record_format dspace
spelling oai:doaj.org-article:030783a10a044d22a9fb614b5463995d2021-12-02T20:09:03ZInteractions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.1932-620310.1371/journal.pone.0254519https://doaj.org/article/030783a10a044d22a9fb614b5463995d2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254519https://doaj.org/toc/1932-6203<h4>Background</h4>Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) S. aureus strains are well recognized as posing substantial problems in treating ocular infections. S. aureus has a vast array of virulence factors, including superantigens and enterotoxins. Their interactions and ability to signal antibiotics resistance have not been explored.<h4>Objectives</h4>To predict the relationship between superantigens and methicillin and multidrug resistance among S. aureus ocular isolates.<h4>Methods</h4>We used a DNA microarray to characterize the enterotoxin and superantigen gene profiles of 98 S. aureus isolates collected from common ocular sources. The outcomes contained phenotypic and genotypic expressions of MRSA. We also included the MDR status as an outcome, categorized as resistance to three or more drugs, including oxacillin, penicillin, erythromycin, clindamycin, moxifloxacin, tetracycline, trimethoprim-sulfamethoxazole and gentamicin. We identified gene profiles that predicted each outcome through a classification analysis utilizing Random Forest machine learning techniques.<h4>Findings</h4>Our machine learning models predicted the outcomes accurately utilizing 67 enterotoxin and superantigen genes. Strong correlates predicting the genotypic expression of MRSA were enterotoxins A, D, J and R and superantigen-like proteins 1, 3, 7 and 10. Among these virulence factors, enterotoxin D and superantigen-like proteins 1, 5 and 10 were also significantly informative for predicting both MDR and MRSA in terms of phenotypic expression. Strong interactions were identified including enterotoxins A (entA) interacting with superantigen-like protein 1 (set6-var1_11), and enterotoxin D (entD) interacting with superantigen-like protein 5 (ssl05/set3_probe 1): MRSA and MDR S. aureus are associated with the presence of both entA and set6-var1_11, or both entD and ssl05/set3_probe 1, while the absence of these genes in pairs indicates non-multidrug-resistant and methicillin-susceptible S. aureus.<h4>Conclusions</h4>MRSA and MDR S. aureus show a different spectrum of ocular pathology than their non-resistant counterparts. When assessing the role of enterotoxins in predicting antibiotics resistance, it is critical to consider both main effects and interactions.Min LuJean-Marie ParelDarlene MillerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0254519 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Min Lu
Jean-Marie Parel
Darlene Miller
Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.
description <h4>Background</h4>Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) S. aureus strains are well recognized as posing substantial problems in treating ocular infections. S. aureus has a vast array of virulence factors, including superantigens and enterotoxins. Their interactions and ability to signal antibiotics resistance have not been explored.<h4>Objectives</h4>To predict the relationship between superantigens and methicillin and multidrug resistance among S. aureus ocular isolates.<h4>Methods</h4>We used a DNA microarray to characterize the enterotoxin and superantigen gene profiles of 98 S. aureus isolates collected from common ocular sources. The outcomes contained phenotypic and genotypic expressions of MRSA. We also included the MDR status as an outcome, categorized as resistance to three or more drugs, including oxacillin, penicillin, erythromycin, clindamycin, moxifloxacin, tetracycline, trimethoprim-sulfamethoxazole and gentamicin. We identified gene profiles that predicted each outcome through a classification analysis utilizing Random Forest machine learning techniques.<h4>Findings</h4>Our machine learning models predicted the outcomes accurately utilizing 67 enterotoxin and superantigen genes. Strong correlates predicting the genotypic expression of MRSA were enterotoxins A, D, J and R and superantigen-like proteins 1, 3, 7 and 10. Among these virulence factors, enterotoxin D and superantigen-like proteins 1, 5 and 10 were also significantly informative for predicting both MDR and MRSA in terms of phenotypic expression. Strong interactions were identified including enterotoxins A (entA) interacting with superantigen-like protein 1 (set6-var1_11), and enterotoxin D (entD) interacting with superantigen-like protein 5 (ssl05/set3_probe 1): MRSA and MDR S. aureus are associated with the presence of both entA and set6-var1_11, or both entD and ssl05/set3_probe 1, while the absence of these genes in pairs indicates non-multidrug-resistant and methicillin-susceptible S. aureus.<h4>Conclusions</h4>MRSA and MDR S. aureus show a different spectrum of ocular pathology than their non-resistant counterparts. When assessing the role of enterotoxins in predicting antibiotics resistance, it is critical to consider both main effects and interactions.
format article
author Min Lu
Jean-Marie Parel
Darlene Miller
author_facet Min Lu
Jean-Marie Parel
Darlene Miller
author_sort Min Lu
title Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.
title_short Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.
title_full Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.
title_fullStr Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.
title_full_unstemmed Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates.
title_sort interactions between staphylococcal enterotoxins a and d and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among staphylococcus aureus ocular isolates.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/030783a10a044d22a9fb614b5463995d
work_keys_str_mv AT minlu interactionsbetweenstaphylococcalenterotoxinsaanddandsuperantigenlikeproteins1and5forpredictingmethicillinandmultidrugresistanceprofilesamongstaphylococcusaureusocularisolates
AT jeanmarieparel interactionsbetweenstaphylococcalenterotoxinsaanddandsuperantigenlikeproteins1and5forpredictingmethicillinandmultidrugresistanceprofilesamongstaphylococcusaureusocularisolates
AT darlenemiller interactionsbetweenstaphylococcalenterotoxinsaanddandsuperantigenlikeproteins1and5forpredictingmethicillinandmultidrugresistanceprofilesamongstaphylococcusaureusocularisolates
_version_ 1718375102022680576