Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
Identification of cell subpopulations using transcript abundance is noisy. Here, the authors developed a linear modeling framework, SSrGE, which utilizes effective and expressed nucleotide variations from single-cell RNA-seq to identify tumor subpopulations.
Guardado en:
Autores principales: | Olivier Poirion, Xun Zhu, Travers Ching, Lana X. Garmire |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/030c4e53dc1f4d4e929628607a36e0d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data
por: Qianhui Huang, et al.
Publicado: (2021) -
Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
por: Derek Thibault, et al.
Publicado: (2019) -
Single nucleotide polymorphisms and copy-number variations in the Trypanosoma brucei repeat (TBR) sequence can be used to enhance amplification and genotyping of Trypanozoon strains.
por: Nick Van Reet, et al.
Publicado: (2021) -
Single nucleotide polymorphisms and copy-number variations in the Trypanosoma brucei repeat (TBR) sequence can be used to enhance amplification and genotyping of Trypanozoon strains
por: Nick Van Reet, et al.
Publicado: (2021) -
Studies of phenotypic and genotypic variation in sixteen cucumber genotypes
por: Ene,Chikezie O, et al.
Publicado: (2016)