Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects

Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes.

Guardado en:
Detalles Bibliográficos
Autores principales: James Zou, Gregory Valiant, Paul Valiant, Konrad Karczewski, Siu On Chan, Kaitlin Samocha, Monkol Lek, Shamil Sunyaev, Mark Daly, Daniel G. MacArthur
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:030ddc69bcf0485d89f5ce1d1a30988b
record_format dspace
spelling oai:doaj.org-article:030ddc69bcf0485d89f5ce1d1a30988b2021-12-02T17:32:08ZQuantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects10.1038/ncomms132932041-1723https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b2016-10-01T00:00:00Zhttps://doi.org/10.1038/ncomms13293https://doaj.org/toc/2041-1723Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes.James ZouGregory ValiantPaul ValiantKonrad KarczewskiSiu On ChanKaitlin SamochaMonkol LekShamil SunyaevMark DalyDaniel G. MacArthurNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-5 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
James Zou
Gregory Valiant
Paul Valiant
Konrad Karczewski
Siu On Chan
Kaitlin Samocha
Monkol Lek
Shamil Sunyaev
Mark Daly
Daniel G. MacArthur
Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
description Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes.
format article
author James Zou
Gregory Valiant
Paul Valiant
Konrad Karczewski
Siu On Chan
Kaitlin Samocha
Monkol Lek
Shamil Sunyaev
Mark Daly
Daniel G. MacArthur
author_facet James Zou
Gregory Valiant
Paul Valiant
Konrad Karczewski
Siu On Chan
Kaitlin Samocha
Monkol Lek
Shamil Sunyaev
Mark Daly
Daniel G. MacArthur
author_sort James Zou
title Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
title_short Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
title_full Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
title_fullStr Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
title_full_unstemmed Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
title_sort quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b
work_keys_str_mv AT jameszou quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT gregoryvaliant quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT paulvaliant quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT konradkarczewski quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT siuonchan quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT kaitlinsamocha quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT monkollek quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT shamilsunyaev quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT markdaly quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
AT danielgmacarthur quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects
_version_ 1718380348410167296