Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes.
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:030ddc69bcf0485d89f5ce1d1a30988b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:030ddc69bcf0485d89f5ce1d1a30988b2021-12-02T17:32:08ZQuantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects10.1038/ncomms132932041-1723https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b2016-10-01T00:00:00Zhttps://doi.org/10.1038/ncomms13293https://doaj.org/toc/2041-1723Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes.James ZouGregory ValiantPaul ValiantKonrad KarczewskiSiu On ChanKaitlin SamochaMonkol LekShamil SunyaevMark DalyDaniel G. MacArthurNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-5 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q James Zou Gregory Valiant Paul Valiant Konrad Karczewski Siu On Chan Kaitlin Samocha Monkol Lek Shamil Sunyaev Mark Daly Daniel G. MacArthur Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
description |
Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes. |
format |
article |
author |
James Zou Gregory Valiant Paul Valiant Konrad Karczewski Siu On Chan Kaitlin Samocha Monkol Lek Shamil Sunyaev Mark Daly Daniel G. MacArthur |
author_facet |
James Zou Gregory Valiant Paul Valiant Konrad Karczewski Siu On Chan Kaitlin Samocha Monkol Lek Shamil Sunyaev Mark Daly Daniel G. MacArthur |
author_sort |
James Zou |
title |
Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
title_short |
Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
title_full |
Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
title_fullStr |
Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
title_full_unstemmed |
Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
title_sort |
quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b |
work_keys_str_mv |
AT jameszou quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT gregoryvaliant quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT paulvaliant quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT konradkarczewski quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT siuonchan quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT kaitlinsamocha quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT monkollek quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT shamilsunyaev quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT markdaly quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects AT danielgmacarthur quantifyingunobservedproteincodingvariantsinhumanpopulationsprovidesaroadmapforlargescalesequencingprojects |
_version_ |
1718380348410167296 |