Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
Accurate estimations of the frequency distribution of rare variants are needed to quantify the discovery power and guide large-scale human sequencing projects. This study describes an algorithm called UnseenEst to estimate the distribution of genetic variations using tens of thousands of exomes.
Guardado en:
Autores principales: | James Zou, Gregory Valiant, Paul Valiant, Konrad Karczewski, Siu On Chan, Kaitlin Samocha, Monkol Lek, Shamil Sunyaev, Mark Daly, Daniel G. MacArthur |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/030ddc69bcf0485d89f5ce1d1a30988b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
STATISTICAL ESTIMATION OF UNOBSERVED ECONOMIC ACTIVITY
por: Galina V. Agentova
Publicado: (2017) -
Phillips curve in Brazil: an unobserved components approach
por: Vicente da Gama Machado, et al.
Publicado: (2014) -
Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes
por: Suganthi Balasubramanian, et al.
Publicado: (2017) -
Inferring collective dynamical states from widely unobserved systems
por: Jens Wilting, et al.
Publicado: (2018) -
Post-conception heat exposure increases clinically unobserved pregnancy losses
por: Tamás Hajdu, et al.
Publicado: (2021)