Subsidence prediction of overburden strata and ground surface in shallow coal seam mining
Abstract Shallow coal seam with thick soil layer is widely reserved in the Jurassic Coalfield, Western China, mining-induced subsidence represents complex characteristics. Combining with physical simulation, theoretical analysis and in-situ observation, the overburden strata structure in dip directi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/031be0b8c31142dea378530b93169931 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:031be0b8c31142dea378530b93169931 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:031be0b8c31142dea378530b931699312021-12-02T17:26:55ZSubsidence prediction of overburden strata and ground surface in shallow coal seam mining10.1038/s41598-021-98520-92045-2322https://doaj.org/article/031be0b8c31142dea378530b931699312021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98520-9https://doaj.org/toc/2045-2322Abstract Shallow coal seam with thick soil layer is widely reserved in the Jurassic Coalfield, Western China, mining-induced subsidence represents complex characteristics. Combining with physical simulation, theoretical analysis and in-situ observation, the overburden strata structure in dip direction were revealed, and the subsidence prediction models were established, based on this, the subsidence equations of overburden strata and ground surface were proposed. The results show that after shallow coal seam mining, based on the subsidence and movement characteristics, the overburden strata structure can be divided into three zones, which are "boundary pillar F-shape zone" (BPZ), "trapezoid goaf zone" (TGZ) and "coal pillar inverted trapezoidal zone" (CPZ). The subsidence of overburden strata depends on the key stratum, while the subsidence of soil layer depends on the bedrock subsidence basin, which is between the bedrock and thick soil layer. The bedrock subsidence is mainly related to mining height and bulking coefficient in TGZ, while it is mainly affected by mining height and distribution load on the key stratum in BPZ and CPZ. According to physical simulation and theoretical model, the maximum surface subsidence of No.1-2 seam mining in Ningtiaota coal mine are 1.1 m and 1.07 m respectively, which is basically consistence with the result of in-situ observation (1.2 m).Jian CaoQingxiang HuangLingfei GuoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jian Cao Qingxiang Huang Lingfei Guo Subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
description |
Abstract Shallow coal seam with thick soil layer is widely reserved in the Jurassic Coalfield, Western China, mining-induced subsidence represents complex characteristics. Combining with physical simulation, theoretical analysis and in-situ observation, the overburden strata structure in dip direction were revealed, and the subsidence prediction models were established, based on this, the subsidence equations of overburden strata and ground surface were proposed. The results show that after shallow coal seam mining, based on the subsidence and movement characteristics, the overburden strata structure can be divided into three zones, which are "boundary pillar F-shape zone" (BPZ), "trapezoid goaf zone" (TGZ) and "coal pillar inverted trapezoidal zone" (CPZ). The subsidence of overburden strata depends on the key stratum, while the subsidence of soil layer depends on the bedrock subsidence basin, which is between the bedrock and thick soil layer. The bedrock subsidence is mainly related to mining height and bulking coefficient in TGZ, while it is mainly affected by mining height and distribution load on the key stratum in BPZ and CPZ. According to physical simulation and theoretical model, the maximum surface subsidence of No.1-2 seam mining in Ningtiaota coal mine are 1.1 m and 1.07 m respectively, which is basically consistence with the result of in-situ observation (1.2 m). |
format |
article |
author |
Jian Cao Qingxiang Huang Lingfei Guo |
author_facet |
Jian Cao Qingxiang Huang Lingfei Guo |
author_sort |
Jian Cao |
title |
Subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
title_short |
Subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
title_full |
Subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
title_fullStr |
Subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
title_full_unstemmed |
Subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
title_sort |
subsidence prediction of overburden strata and ground surface in shallow coal seam mining |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/031be0b8c31142dea378530b93169931 |
work_keys_str_mv |
AT jiancao subsidencepredictionofoverburdenstrataandgroundsurfaceinshallowcoalseammining AT qingxianghuang subsidencepredictionofoverburdenstrataandgroundsurfaceinshallowcoalseammining AT lingfeiguo subsidencepredictionofoverburdenstrataandgroundsurfaceinshallowcoalseammining |
_version_ |
1718380771588177920 |