Wideband Millimeter-Wave Flat Chaos Generation With Controllable Power Spectrum Using Optical Time Lens
We propose and numerically demonstrate the generation of wideband millimeter-wave (mmW) flat chaos with controllable power spectrum by injection of chaotic signal from external cavity semiconductor laser (ECSL) into optical time lens with noise phase modulation. Simulation results indicate consisten...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0321d14a502c4d26849636fdde7cc071 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We propose and numerically demonstrate the generation of wideband millimeter-wave (mmW) flat chaos with controllable power spectrum by injection of chaotic signal from external cavity semiconductor laser (ECSL) into optical time lens with noise phase modulation. Simulation results indicate consistent elimination of the ECSL relaxation oscillation frequency domination over the RF spectrum for large scale parameters of the optical time lens module and a wideband flat chaos, whose efficient bandwidth rapidly increases with the bandwidth of the noise signal driving the phase modulator and phase modulation index. Besides, we show that the time delay signature suppression can be concurrently achieved for moderate values of the noise bandwidth and phase modulation index. The proposed wideband mmW flat chaos exhibits great potential applications for ultrahigh-speed chaos communications, mmW radars and macroscopic mmW noise source required for mmW research and design. |
---|