Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans
Abstract Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the regi...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/032962ea33b042f18d65605a459c0cc8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:032962ea33b042f18d65605a459c0cc8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:032962ea33b042f18d65605a459c0cc82021-11-21T12:17:35ZRepulsive guidance molecule acts in axon branching in Caenorhabditis elegans10.1038/s41598-021-01853-82045-2322https://doaj.org/article/032962ea33b042f18d65605a459c0cc82021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01853-8https://doaj.org/toc/2045-2322Abstract Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.Kaname TsutsuiHon-Song KimChizu YoshikataKenji KimuraYukihiko KubotaYukimasa ShibataChenxi TianJun LiuKiyoji NishiwakiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kaname Tsutsui Hon-Song Kim Chizu Yoshikata Kenji Kimura Yukihiko Kubota Yukimasa Shibata Chenxi Tian Jun Liu Kiyoji Nishiwaki Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans |
description |
Abstract Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons. |
format |
article |
author |
Kaname Tsutsui Hon-Song Kim Chizu Yoshikata Kenji Kimura Yukihiko Kubota Yukimasa Shibata Chenxi Tian Jun Liu Kiyoji Nishiwaki |
author_facet |
Kaname Tsutsui Hon-Song Kim Chizu Yoshikata Kenji Kimura Yukihiko Kubota Yukimasa Shibata Chenxi Tian Jun Liu Kiyoji Nishiwaki |
author_sort |
Kaname Tsutsui |
title |
Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans |
title_short |
Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans |
title_full |
Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans |
title_fullStr |
Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans |
title_full_unstemmed |
Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans |
title_sort |
repulsive guidance molecule acts in axon branching in caenorhabditis elegans |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/032962ea33b042f18d65605a459c0cc8 |
work_keys_str_mv |
AT kanametsutsui repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT honsongkim repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT chizuyoshikata repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT kenjikimura repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT yukihikokubota repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT yukimasashibata repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT chenxitian repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT junliu repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans AT kiyojinishiwaki repulsiveguidancemoleculeactsinaxonbranchingincaenorhabditiselegans |
_version_ |
1718419044041752576 |