Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.

<h4>Background</h4>The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of ma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Heesun Shin, Casey P Shannon, Nick Fishbane, Jian Ruan, Mi Zhou, Robert Balshaw, Janet E Wilson-McManus, Raymond T Ng, Bruce M McManus, Scott J Tebbutt, PROOF Centre of Excellence Team
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/032b41fd10e04d03b8a0503ca4cde6ed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:032b41fd10e04d03b8a0503ca4cde6ed
record_format dspace
spelling oai:doaj.org-article:032b41fd10e04d03b8a0503ca4cde6ed2021-11-18T08:29:15ZVariation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.1932-620310.1371/journal.pone.0091041https://doaj.org/article/032b41fd10e04d03b8a0503ca4cde6ed2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24608128/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples.<h4>Results</h4>We compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding.<h4>Conclusions</h4>Globin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA-Seq is highly reproducible within a large dynamic range of detection and provides an accurate estimation of RNA concentration in peripheral whole blood. High-throughput sequencing is thus a promising technology for whole blood transcriptomics and biomarker discovery.Heesun ShinCasey P ShannonNick FishbaneJian RuanMi ZhouRobert BalshawJanet E Wilson-McManusRaymond T NgBruce M McManusScott J TebbuttPROOF Centre of Excellence TeamPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 3, p e91041 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Heesun Shin
Casey P Shannon
Nick Fishbane
Jian Ruan
Mi Zhou
Robert Balshaw
Janet E Wilson-McManus
Raymond T Ng
Bruce M McManus
Scott J Tebbutt
PROOF Centre of Excellence Team
Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
description <h4>Background</h4>The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples.<h4>Results</h4>We compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding.<h4>Conclusions</h4>Globin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA-Seq is highly reproducible within a large dynamic range of detection and provides an accurate estimation of RNA concentration in peripheral whole blood. High-throughput sequencing is thus a promising technology for whole blood transcriptomics and biomarker discovery.
format article
author Heesun Shin
Casey P Shannon
Nick Fishbane
Jian Ruan
Mi Zhou
Robert Balshaw
Janet E Wilson-McManus
Raymond T Ng
Bruce M McManus
Scott J Tebbutt
PROOF Centre of Excellence Team
author_facet Heesun Shin
Casey P Shannon
Nick Fishbane
Jian Ruan
Mi Zhou
Robert Balshaw
Janet E Wilson-McManus
Raymond T Ng
Bruce M McManus
Scott J Tebbutt
PROOF Centre of Excellence Team
author_sort Heesun Shin
title Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
title_short Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
title_full Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
title_fullStr Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
title_full_unstemmed Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
title_sort variation in rna-seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/032b41fd10e04d03b8a0503ca4cde6ed
work_keys_str_mv AT heesunshin variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT caseypshannon variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT nickfishbane variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT jianruan variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT mizhou variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT robertbalshaw variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT janetewilsonmcmanus variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT raymondtng variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT brucemmcmanus variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT scottjtebbutt variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
AT proofcentreofexcellenceteam variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion
_version_ 1718421721761972224