Early Warning System for Online STEM Learning—A Slimmer Approach Using Recurrent Neural Networks
While the use of deep neural networks is popular for predicting students’ learning outcomes, convolutional neural network (CNN)-based methods are used more often. Such methods require numerous features, training data, or multiple models to achieve week-by-week predictions. However, many current lear...
Enregistré dans:
| Auteurs principaux: | Chih-Chang Yu, Yufeng (Leon) Wu |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/034873ddc01f4d7d9b3b77a1a09fab7b |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Advanced Warning System to Improve Safety at Train Grade Crossings
par: Joaquin Haces-Garcia, et autres
Publié: (2021) -
Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data
par: Yuming Lu, et autres
Publié: (2021) -
Remodeling the STEM Curriculum for Future Engineers
par: Chun-Hung Lin, et autres
Publié: (2021) -
Investigating Students’ Digital Literacy Levels during Online Education Due to COVID-19 Pandemic
par: Banu Inan Karagul, et autres
Publié: (2021) -
Reviewer Experience vs. Expertise: Which Matters More for Good Course Reviews in Online Learning?
par: Zhao Du, et autres
Publié: (2021)