Early Warning System for Online STEM Learning—A Slimmer Approach Using Recurrent Neural Networks
While the use of deep neural networks is popular for predicting students’ learning outcomes, convolutional neural network (CNN)-based methods are used more often. Such methods require numerous features, training data, or multiple models to achieve week-by-week predictions. However, many current lear...
Guardado en:
Autores principales: | Chih-Chang Yu, Yufeng (Leon) Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/034873ddc01f4d7d9b3b77a1a09fab7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advanced Warning System to Improve Safety at Train Grade Crossings
por: Joaquin Haces-Garcia, et al.
Publicado: (2021) -
Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data
por: Yuming Lu, et al.
Publicado: (2021) -
Remodeling the STEM Curriculum for Future Engineers
por: Chun-Hung Lin, et al.
Publicado: (2021) -
Investigating Students’ Digital Literacy Levels during Online Education Due to COVID-19 Pandemic
por: Banu Inan Karagul, et al.
Publicado: (2021) -
Reviewer Experience vs. Expertise: Which Matters More for Good Course Reviews in Online Learning?
por: Zhao Du, et al.
Publicado: (2021)