Emergency Braking Intention Detect System Based on K-Order Propagation Number Algorithm: A Network Perspective
In order to avoid erroneous braking responses when vehicle drivers are faced with a stressful setting, a <i>K-order propagation number algorithm–Feature selection–Classification System (KFCS)</i> is developed in this paper to detect emergency braking intentions in simulated driving scena...
Guardado en:
Autores principales: | Yuhong Zhang, Yuan Liao, Yudi Zhang, Liya Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0351a45926cf408188de7979cb65dae1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exploring Fatigue Effects on Performance Variation of Intensive Brain–Computer Interface Practice
por: Songwei Li, et al.
Publicado: (2021) -
Quantitatively Recognizing Stimuli Intensity of Primary Taste Based on Surface Electromyography
por: Hengyang Wang, et al.
Publicado: (2021) -
Registro de la actividad eléctrica cerebral de la atención implicada en la conducción bajo el efecto del alcohol usando un instrumento BCI (brain control interface)
por: Sandra Camelo, et al.
Publicado: (2015) -
Control de movimiento robótico con detección cognitiva y facial mediante Emotiv EEG
por: Monge Lay,Sebastián, et al.
Publicado: (2015) -
Entropy as Measure of Brain Networks’ Complexity in Eyes Open and Closed Conditions
por: Fabrizio Vecchio, et al.
Publicado: (2021)