Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient
Artificial Neural Network Backpropagation is known as one of the most reliable methods of predicting. The algorithm used in this research is Conjugate Gradient algorithm, with gold data data of input data for training data. The price of gold becomes an issue in the market, as a precious metal that c...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN ID |
Publicado: |
P3M Politeknik Negeri Banjarmasin
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/036bc611320845b78e77c63320ff282a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:036bc611320845b78e77c63320ff282a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:036bc611320845b78e77c63320ff282a2021-12-02T10:53:02ZPrediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient2598-32452598-328810.31961/eltikom.v1i2.21https://doaj.org/article/036bc611320845b78e77c63320ff282a2018-01-01T00:00:00Zhttp://eltikom.poliban.ac.id/index.php/eltikom/article/view/21https://doaj.org/toc/2598-3245https://doaj.org/toc/2598-3288Artificial Neural Network Backpropagation is known as one of the most reliable methods of predicting. The algorithm used in this research is Conjugate Gradient algorithm, with gold data data of input data for training data. The price of gold becomes an issue in the market, as a precious metal that can be used for investment is very interesting to make a gold price prediction application. Gold prices continue to increase in the world market, making investors interested to invest in this precious metal. The application of gold price prediction will be very useful for investors of precious metals. Gold price data used in this research is daily data, taken 3 (three) last year and divided into test data and data testing. Test data is used to generate new weights for data testing. The parameters used in the measurement of evaluation of predicted results from Conjugate Gradient algorithm Artificial Neural Network Backpropagation method is Meant Square Error (MSE), where the result of MSE from this research is 0.0313651yuslena SariP3M Politeknik Negeri BanjarmasinarticleConjugate GradientArtificial Neural NetworkBackpropagationPrediksiEmasElectrical engineering. Electronics. Nuclear engineeringTK1-9971Information technologyT58.5-58.64ENIDJurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, Vol 1, Iss 2, Pp 64-70 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN ID |
topic |
Conjugate Gradient Artificial Neural Network Backpropagation Prediksi Emas Electrical engineering. Electronics. Nuclear engineering TK1-9971 Information technology T58.5-58.64 |
spellingShingle |
Conjugate Gradient Artificial Neural Network Backpropagation Prediksi Emas Electrical engineering. Electronics. Nuclear engineering TK1-9971 Information technology T58.5-58.64 yuslena Sari Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient |
description |
Artificial Neural Network Backpropagation is known as one of the most reliable methods of predicting. The algorithm used in this research is Conjugate Gradient algorithm, with gold data data of input data for training data. The price of gold becomes an issue in the market, as a precious metal that can be used for investment is very interesting to make a gold price prediction application. Gold prices continue to increase in the world market, making investors interested to invest in this precious metal. The application of gold price prediction will be very useful for investors of precious metals. Gold price data used in this research is daily data, taken 3 (three) last year and divided into test data and data testing. Test data is used to generate new weights for data testing. The parameters used in the measurement of evaluation of predicted results from Conjugate Gradient algorithm Artificial Neural Network Backpropagation method is Meant Square Error (MSE), where the result of MSE from this research is 0.0313651 |
format |
article |
author |
yuslena Sari |
author_facet |
yuslena Sari |
author_sort |
yuslena Sari |
title |
Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient |
title_short |
Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient |
title_full |
Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient |
title_fullStr |
Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient |
title_full_unstemmed |
Prediksi Harga Emas Menggunakan Metode Neural Network Backropagation Algoritma Conjugate Gradient |
title_sort |
prediksi harga emas menggunakan metode neural network backropagation algoritma conjugate gradient |
publisher |
P3M Politeknik Negeri Banjarmasin |
publishDate |
2018 |
url |
https://doaj.org/article/036bc611320845b78e77c63320ff282a |
work_keys_str_mv |
AT yuslenasari prediksihargaemasmenggunakanmetodeneuralnetworkbackropagationalgoritmaconjugategradient |
_version_ |
1718396509820551168 |