Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors

The interest in graphene-based electronics is due to graphene’s great carrier mobility, atomic thickness, resistance to radiation, and tolerance to extreme temperatures. These characteristics enable the development of extremely miniaturized high-performing electronic devices for next-generation radi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Monica La Mura, Patrizia Lamberti, Vincenzo Tucci
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/03709be58a86402cb457b17bcbffab59
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:03709be58a86402cb457b17bcbffab59
record_format dspace
spelling oai:doaj.org-article:03709be58a86402cb457b17bcbffab592021-11-25T18:32:37ZNumerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors10.3390/nano111131212079-4991https://doaj.org/article/03709be58a86402cb457b17bcbffab592021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/3121https://doaj.org/toc/2079-4991The interest in graphene-based electronics is due to graphene’s great carrier mobility, atomic thickness, resistance to radiation, and tolerance to extreme temperatures. These characteristics enable the development of extremely miniaturized high-performing electronic devices for next-generation radiofrequency (RF) communication systems. The main building block of graphene-based electronics is the graphene-field effect transistor (GFET). An important issue hindering the diffusion of GFET-based circuits on a commercial level is the repeatability of the fabrication process, which affects the uncertainty of both the device geometry and the graphene quality. Concerning the GFET geometrical parameters, it is well known that the channel length is the main factor that determines the high-frequency limitations of a field-effect transistor, and is therefore the parameter that should be better controlled during the fabrication. Nevertheless, other parameters are affected by a fabrication-related tolerance; to understand to which extent an increase of the accuracy of the GFET layout patterning process steps can improve the performance uniformity, their impact on the GFET performance variability should be considered and compared to that of the channel length. In this work, we assess the impact of the fabrication-related tolerances of GFET-base amplifier geometrical parameters on the RF performance, in terms of the amplifier transit frequency and maximum oscillation frequency, by using a design-of-experiments approach.Monica La MuraPatrizia LambertiVincenzo TucciMDPI AGarticledesign of experimentsGFETgraphenehigh-frequencyRF devicestolerance analysisChemistryQD1-999ENNanomaterials, Vol 11, Iss 3121, p 3121 (2021)
institution DOAJ
collection DOAJ
language EN
topic design of experiments
GFET
graphene
high-frequency
RF devices
tolerance analysis
Chemistry
QD1-999
spellingShingle design of experiments
GFET
graphene
high-frequency
RF devices
tolerance analysis
Chemistry
QD1-999
Monica La Mura
Patrizia Lamberti
Vincenzo Tucci
Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
description The interest in graphene-based electronics is due to graphene’s great carrier mobility, atomic thickness, resistance to radiation, and tolerance to extreme temperatures. These characteristics enable the development of extremely miniaturized high-performing electronic devices for next-generation radiofrequency (RF) communication systems. The main building block of graphene-based electronics is the graphene-field effect transistor (GFET). An important issue hindering the diffusion of GFET-based circuits on a commercial level is the repeatability of the fabrication process, which affects the uncertainty of both the device geometry and the graphene quality. Concerning the GFET geometrical parameters, it is well known that the channel length is the main factor that determines the high-frequency limitations of a field-effect transistor, and is therefore the parameter that should be better controlled during the fabrication. Nevertheless, other parameters are affected by a fabrication-related tolerance; to understand to which extent an increase of the accuracy of the GFET layout patterning process steps can improve the performance uniformity, their impact on the GFET performance variability should be considered and compared to that of the channel length. In this work, we assess the impact of the fabrication-related tolerances of GFET-base amplifier geometrical parameters on the RF performance, in terms of the amplifier transit frequency and maximum oscillation frequency, by using a design-of-experiments approach.
format article
author Monica La Mura
Patrizia Lamberti
Vincenzo Tucci
author_facet Monica La Mura
Patrizia Lamberti
Vincenzo Tucci
author_sort Monica La Mura
title Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
title_short Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
title_full Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
title_fullStr Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
title_full_unstemmed Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
title_sort numerical evaluation of the effect of geometric tolerances on the high-frequency performance of graphene field-effect transistors
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/03709be58a86402cb457b17bcbffab59
work_keys_str_mv AT monicalamura numericalevaluationoftheeffectofgeometrictolerancesonthehighfrequencyperformanceofgraphenefieldeffecttransistors
AT patrizialamberti numericalevaluationoftheeffectofgeometrictolerancesonthehighfrequencyperformanceofgraphenefieldeffecttransistors
AT vincenzotucci numericalevaluationoftheeffectofgeometrictolerancesonthehighfrequencyperformanceofgraphenefieldeffecttransistors
_version_ 1718410995716587520