Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool

Abstract Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carlos Wert-Carvajal, Rubén Sánchez-García, José R Macías, Rebeca Sanz-Pamplona, Almudena Méndez Pérez, Ramon Alemany, Esteban Veiga, Carlos Óscar S. Sorzano, Arrate Muñoz-Barrutia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/038361e19c14470f97f51c3ee01ac5bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:038361e19c14470f97f51c3ee01ac5bc
record_format dspace
spelling oai:doaj.org-article:038361e19c14470f97f51c3ee01ac5bc2021-12-02T16:53:19ZPredicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool10.1038/s41598-021-89927-52045-2322https://doaj.org/article/038361e19c14470f97f51c3ee01ac5bc2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89927-5https://doaj.org/toc/2045-2322Abstract Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.Carlos Wert-CarvajalRubén Sánchez-GarcíaJosé R MacíasRebeca Sanz-PamplonaAlmudena Méndez PérezRamon AlemanyEsteban VeigaCarlos Óscar S. SorzanoArrate Muñoz-BarrutiaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Carlos Wert-Carvajal
Rubén Sánchez-García
José R Macías
Rebeca Sanz-Pamplona
Almudena Méndez Pérez
Ramon Alemany
Esteban Veiga
Carlos Óscar S. Sorzano
Arrate Muñoz-Barrutia
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
description Abstract Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.
format article
author Carlos Wert-Carvajal
Rubén Sánchez-García
José R Macías
Rebeca Sanz-Pamplona
Almudena Méndez Pérez
Ramon Alemany
Esteban Veiga
Carlos Óscar S. Sorzano
Arrate Muñoz-Barrutia
author_facet Carlos Wert-Carvajal
Rubén Sánchez-García
José R Macías
Rebeca Sanz-Pamplona
Almudena Méndez Pérez
Ramon Alemany
Esteban Veiga
Carlos Óscar S. Sorzano
Arrate Muñoz-Barrutia
author_sort Carlos Wert-Carvajal
title Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_short Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_full Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_fullStr Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_full_unstemmed Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_sort predicting mhc i restricted t cell epitopes in mice with nap-cnb, a novel online tool
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/038361e19c14470f97f51c3ee01ac5bc
work_keys_str_mv AT carloswertcarvajal predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT rubensanchezgarcia predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT josermacias predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT rebecasanzpamplona predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT almudenamendezperez predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT ramonalemany predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT estebanveiga predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT carlososcarssorzano predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT arratemunozbarrutia predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
_version_ 1718382838996271104