Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
Abstract Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection p...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/038361e19c14470f97f51c3ee01ac5bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:038361e19c14470f97f51c3ee01ac5bc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:038361e19c14470f97f51c3ee01ac5bc2021-12-02T16:53:19ZPredicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool10.1038/s41598-021-89927-52045-2322https://doaj.org/article/038361e19c14470f97f51c3ee01ac5bc2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89927-5https://doaj.org/toc/2045-2322Abstract Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.Carlos Wert-CarvajalRubén Sánchez-GarcíaJosé R MacíasRebeca Sanz-PamplonaAlmudena Méndez PérezRamon AlemanyEsteban VeigaCarlos Óscar S. SorzanoArrate Muñoz-BarrutiaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Carlos Wert-Carvajal Rubén Sánchez-García José R Macías Rebeca Sanz-Pamplona Almudena Méndez Pérez Ramon Alemany Esteban Veiga Carlos Óscar S. Sorzano Arrate Muñoz-Barrutia Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool |
description |
Abstract Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section. |
format |
article |
author |
Carlos Wert-Carvajal Rubén Sánchez-García José R Macías Rebeca Sanz-Pamplona Almudena Méndez Pérez Ramon Alemany Esteban Veiga Carlos Óscar S. Sorzano Arrate Muñoz-Barrutia |
author_facet |
Carlos Wert-Carvajal Rubén Sánchez-García José R Macías Rebeca Sanz-Pamplona Almudena Méndez Pérez Ramon Alemany Esteban Veiga Carlos Óscar S. Sorzano Arrate Muñoz-Barrutia |
author_sort |
Carlos Wert-Carvajal |
title |
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool |
title_short |
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool |
title_full |
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool |
title_fullStr |
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool |
title_full_unstemmed |
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool |
title_sort |
predicting mhc i restricted t cell epitopes in mice with nap-cnb, a novel online tool |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/038361e19c14470f97f51c3ee01ac5bc |
work_keys_str_mv |
AT carloswertcarvajal predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT rubensanchezgarcia predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT josermacias predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT rebecasanzpamplona predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT almudenamendezperez predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT ramonalemany predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT estebanveiga predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT carlososcarssorzano predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool AT arratemunozbarrutia predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool |
_version_ |
1718382838996271104 |