Climate and Management Factors Underlying Changes in Beech Forest Herbaceous Layer Plant Communities in the Polish Eastern Carpathians
The herbaceous vegetation and forest stand characteristics in European beech forests growing in the Polish part of the Eastern Carpathians have changed over the last 40 years. This has been influenced by many factors, including land-use change, forest management and climate change. This study invest...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0390fe0fc75840efab19852f7d3a468b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The herbaceous vegetation and forest stand characteristics in European beech forests growing in the Polish part of the Eastern Carpathians have changed over the last 40 years. This has been influenced by many factors, including land-use change, forest management and climate change. This study investigates changes in forest cover and structure and the associated changes in herbaceous layer plant communities and seeks to elucidate whether and how beech forest herbaceous layer communities have been affected by climate change. The study used information from archival and current land cover maps, semi-permanent sampling plots, forest management plans for the Forest Districts of Brzozów, Lesko and Ustrzyki Dolne and meteorological weather station data compiled for three study periods of herbaceous vegetation (1970s, 2000s, 2010s). In the study area, the regular shelterwood system was changed to an irregular shelterwood system that produces stands with a complex overstorey structure. The results revealed the important role of light availability in shaping the species composition of the herbaceous layer in semi-natural Carpathian beech forests, which was strongly related to the course of management activities. An overall decrease in the number of species during the 2010s is linked to the ageing of beech forests, increased intensity of management activities in ageing stands, competition from understorey vegetation and lower soil moisture that can be linked to climate change. Our study partially supports the existing findings that more manipulative forest management systems can play an important role in countering the current and expected effects of climate change on the forest ecosystem because of the low degree of spatial differentiation of the stand’s structure (developmental stages). Therefore, foresters managing the structure of stands should strive to create a forest structure with high variability of developmental stages on a regional scale. |
---|