Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes
Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-e...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/039bafebea45446d9bb39f689cd54f20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:039bafebea45446d9bb39f689cd54f20 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:039bafebea45446d9bb39f689cd54f202021-11-25T16:54:51ZNon-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes10.3390/bios111104092079-6374https://doaj.org/article/039bafebea45446d9bb39f689cd54f202021-10-01T00:00:00Zhttps://www.mdpi.com/2079-6374/11/11/409https://doaj.org/toc/2079-6374Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>±</mo></semantics></math></inline-formula> 0.45 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi><mtext> </mtext><mi>cm</mi></mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>10</mn></mrow></msub><mrow><mo>(</mo><mrow><mi>mole</mi><mo>.</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment.Lindsey GoodnightDerrick ButlerTunan XiaAida EbrahimiMDPI AGarticlecoppernickelelectrochemical sensorneutral solutionglucosenon-enzymaticBiotechnologyTP248.13-248.65ENBiosensors, Vol 11, Iss 409, p 409 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
copper nickel electrochemical sensor neutral solution glucose non-enzymatic Biotechnology TP248.13-248.65 |
spellingShingle |
copper nickel electrochemical sensor neutral solution glucose non-enzymatic Biotechnology TP248.13-248.65 Lindsey Goodnight Derrick Butler Tunan Xia Aida Ebrahimi Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
description |
Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>±</mo></semantics></math></inline-formula> 0.45 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi><mtext> </mtext><mi>cm</mi></mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>10</mn></mrow></msub><mrow><mo>(</mo><mrow><mi>mole</mi><mo>.</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment. |
format |
article |
author |
Lindsey Goodnight Derrick Butler Tunan Xia Aida Ebrahimi |
author_facet |
Lindsey Goodnight Derrick Butler Tunan Xia Aida Ebrahimi |
author_sort |
Lindsey Goodnight |
title |
Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_short |
Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_full |
Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_fullStr |
Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_full_unstemmed |
Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_sort |
non-enzymatic detection of glucose in neutral solution using pbs-treated electrodeposited copper-nickel electrodes |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/039bafebea45446d9bb39f689cd54f20 |
work_keys_str_mv |
AT lindseygoodnight nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes AT derrickbutler nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes AT tunanxia nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes AT aidaebrahimi nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes |
_version_ |
1718412815767699456 |