Deep phenotyping unveils hidden traits and genetic relations in subtle mutants
Experimenter scoring of cellular imaging data can be biased. This study describes an automated and unbiased multidimensional phenotyping method that relies on machine learning and complex feature computation of imaging data, and identifies weak alleles affecting synapse morphology in live C. elegans...
Guardado en:
Autores principales: | Adriana San-Miguel, Peri T. Kurshan, Matthew M. Crane, Yuehui Zhao, Patrick T. McGrath, Kang Shen, Hang Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/03b8216cade54677a546756f6c9445f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unveiling hidden multipolar orders with magnetostriction
por: Adarsh S. Patri, et al.
Publicado: (2019) -
Unveiling the hidden nematicity and spin subsystem in FeSe
por: Chih-Wei Luo, et al.
Publicado: (2017) -
The Subtle Residual
por: Elena Moskalenko
Publicado: (2021) -
Using Model Analysis to Unveil Hidden Patterns in Tropical Forest Structures
por: Nicolas Picard, et al.
Publicado: (2021) -
Unveiling giant hidden Rashba effects in two-dimensional Si2Bi2
por: Seungjun Lee, et al.
Publicado: (2020)