Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer
Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-source operating system, retaining the most significant market share and active user population of all open-source operating systems. Hence, malicious actors target the Android operating system to capitalize on th...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/03e55aa1d8f94389a1a21e104f7a730b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:03e55aa1d8f94389a1a21e104f7a730b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:03e55aa1d8f94389a1a21e104f7a730b2021-11-25T06:19:30ZAndroid malware classification based on random vector functional link and artificial Jellyfish Search optimizer1932-6203https://doaj.org/article/03e55aa1d8f94389a1a21e104f7a730b2021-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604294/?tool=EBIhttps://doaj.org/toc/1932-6203Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-source operating system, retaining the most significant market share and active user population of all open-source operating systems. Hence, malicious actors target the Android operating system to capitalize on this consumer reliance and vulnerabilities present in the system. Hackers often use confidential user data to exploit users for advertising, extortion, and theft. Notably, most Android malware detection tools depend on conventional machine-learning algorithms; hence, they lose the benefits of metaheuristic optimization. Here, we introduce a novel detection system based on optimizing the random vector functional link (RVFL) using the artificial Jellyfish Search (JS) optimizer following dimensional reduction of Android application features. JS is used to determine the optimal configurations of RVFL to improve classification performance. RVFL+JS minimizes the runtime of the execution of the optimized models with the best performance metrics, based on a dataset consisting of 11,598 multi-class applications and 471 static and dynamic features.Emad T. ElkabbashReham R. MostafaSherif I. BarakatPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Emad T. Elkabbash Reham R. Mostafa Sherif I. Barakat Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer |
description |
Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-source operating system, retaining the most significant market share and active user population of all open-source operating systems. Hence, malicious actors target the Android operating system to capitalize on this consumer reliance and vulnerabilities present in the system. Hackers often use confidential user data to exploit users for advertising, extortion, and theft. Notably, most Android malware detection tools depend on conventional machine-learning algorithms; hence, they lose the benefits of metaheuristic optimization. Here, we introduce a novel detection system based on optimizing the random vector functional link (RVFL) using the artificial Jellyfish Search (JS) optimizer following dimensional reduction of Android application features. JS is used to determine the optimal configurations of RVFL to improve classification performance. RVFL+JS minimizes the runtime of the execution of the optimized models with the best performance metrics, based on a dataset consisting of 11,598 multi-class applications and 471 static and dynamic features. |
format |
article |
author |
Emad T. Elkabbash Reham R. Mostafa Sherif I. Barakat |
author_facet |
Emad T. Elkabbash Reham R. Mostafa Sherif I. Barakat |
author_sort |
Emad T. Elkabbash |
title |
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer |
title_short |
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer |
title_full |
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer |
title_fullStr |
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer |
title_full_unstemmed |
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer |
title_sort |
android malware classification based on random vector functional link and artificial jellyfish search optimizer |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/03e55aa1d8f94389a1a21e104f7a730b |
work_keys_str_mv |
AT emadtelkabbash androidmalwareclassificationbasedonrandomvectorfunctionallinkandartificialjellyfishsearchoptimizer AT rehamrmostafa androidmalwareclassificationbasedonrandomvectorfunctionallinkandartificialjellyfishsearchoptimizer AT sherifibarakat androidmalwareclassificationbasedonrandomvectorfunctionallinkandartificialjellyfishsearchoptimizer |
_version_ |
1718413843423559680 |