Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer
Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-source operating system, retaining the most significant market share and active user population of all open-source operating systems. Hence, malicious actors target the Android operating system to capitalize on th...
Guardado en:
Autores principales: | Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/03e55aa1d8f94389a1a21e104f7a730b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer.
por: Emad T Elkabbash, et al.
Publicado: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
por: Minki Kim, et al.
Publicado: (2021) -
PICAndro: Packet InspeCtion-Based Android Malware Detection
por: Vikas Sihag, et al.
Publicado: (2021) -
A static analysis approach for Android permission-based malware detection systems.
por: Juliza Mohamad Arif, et al.
Publicado: (2021)