Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer
Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-source operating system, retaining the most significant market share and active user population of all open-source operating systems. Hence, malicious actors target the Android operating system to capitalize on th...
Enregistré dans:
Auteurs principaux: | Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/03e55aa1d8f94389a1a21e104f7a730b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Android malware classification based on random vector functional link and artificial Jellyfish Search optimizer.
par: Emad T Elkabbash, et autres
Publié: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
par: Altyeb Taha, et autres
Publié: (2021) -
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
par: Minki Kim, et autres
Publié: (2021) -
PICAndro: Packet InspeCtion-Based Android Malware Detection
par: Vikas Sihag, et autres
Publié: (2021) -
A static analysis approach for Android permission-based malware detection systems.
par: Juliza Mohamad Arif, et autres
Publié: (2021)