Insulin-like growth factor I and its binding protein-3 are regulators of lactation and maternal responsiveness
Abstract Adaptation to motherhood includes maternal behaviour and lactation during the postpartum period. The major organizing centres of maternal behaviour and lactation are located in the hypothalamic medial preoptic area (MPOA) and the arcuate nucleus, respectively. Insulin-like growth factor I (...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/03efc2641340475c9678e82a73f930ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Adaptation to motherhood includes maternal behaviour and lactation during the postpartum period. The major organizing centres of maternal behaviour and lactation are located in the hypothalamic medial preoptic area (MPOA) and the arcuate nucleus, respectively. Insulin-like growth factor I (IGF-I) is an effector of the growth hormone axis; however, its function in the brain is largely unexplored. We identified increased maternal IGF binding protein-3 (IGFBP-3) expression in preoptic rat microarray data and confirmed it by RT-PCR. In situ hybridization histochemistry showed markedly elevated IGFBP-3 expression in the MPOA and the arcuate nucleus in rat dams. Prolonged intracerebroventricular injection of IGF-I or antagonism of brain IGFBP-3 with an inhibitor (NBI-31772) using osmotic minipumps increased pup retrieval time, suggesting reduced maternal motivation. Suckling-induced prolactin release and pup weight gain were also suppressed by IGF-I, suggesting reduced lactation. In addition, IGF-I-induced tyrosine hydroxylase expression and its specific phosphorylation in tuberoinfundibular dopaminergic neurons suppress prolactin secretion. Thus, IGF-I may inhibit both behavioural and lactational alterations in mothers. Neurons in the MPOA and arcuate nuclei express IGFBP-3 during the postpartum period to neutralize IGF-I effects. IGFBP-3 can prevent the blockade of maternal behaviour and lactation exerted by IGF-I, suggesting a novel modulatory mechanism underlying the behavioural and hormonal effects during central maternal adaptations. |
---|