Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates

ABSTRACT Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masahiko Morita, Nikhil S. Malvankar, Ashley E. Franks, Zarath M. Summers, Ludovic Giloteaux, Amelia E. Rotaru, Camelia Rotaru, Derek R. Lovley
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2011
Materias:
Acceso en línea:https://doaj.org/article/040699f9c6ea499abe30302bec0d9a8f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:040699f9c6ea499abe30302bec0d9a8f
record_format dspace
spelling oai:doaj.org-article:040699f9c6ea499abe30302bec0d9a8f2021-11-15T15:38:44ZPotential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates10.1128/mBio.00159-112150-7511https://doaj.org/article/040699f9c6ea499abe30302bec0d9a8f2011-09-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00159-11https://doaj.org/toc/2150-7511ABSTRACT Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems. IMPORTANCE The conversion of waste organic matter to methane is an important bioenergy strategy, and a similar microbial metabolism of complex organic matter in anaerobic soils and sediments plays an important role in the global carbon cycle. Studies with laboratory cultures have demonstrated that hydrogen or formate can serve as an electron shuttle between the microorganisms degrading organic compounds and methanogens. However, the importance of hydrogen and formate as intermediates in the conversion of organic matter to methane in natural communities is less clear. The possibility that microorganisms within some natural methanogenic aggregates may directly exchange electrons, rather than producing hydrogen or formate as an intermediary electron carrier, is a significant paradigm shift with implications for the modeling and design of anaerobic wastewater reactors and for understanding how methanogenic communities will respond to environmental perturbations.Masahiko MoritaNikhil S. MalvankarAshley E. FranksZarath M. SummersLudovic GiloteauxAmelia E. RotaruCamelia RotaruDerek R. LovleyAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 2, Iss 4 (2011)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Masahiko Morita
Nikhil S. Malvankar
Ashley E. Franks
Zarath M. Summers
Ludovic Giloteaux
Amelia E. Rotaru
Camelia Rotaru
Derek R. Lovley
Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
description ABSTRACT Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems. IMPORTANCE The conversion of waste organic matter to methane is an important bioenergy strategy, and a similar microbial metabolism of complex organic matter in anaerobic soils and sediments plays an important role in the global carbon cycle. Studies with laboratory cultures have demonstrated that hydrogen or formate can serve as an electron shuttle between the microorganisms degrading organic compounds and methanogens. However, the importance of hydrogen and formate as intermediates in the conversion of organic matter to methane in natural communities is less clear. The possibility that microorganisms within some natural methanogenic aggregates may directly exchange electrons, rather than producing hydrogen or formate as an intermediary electron carrier, is a significant paradigm shift with implications for the modeling and design of anaerobic wastewater reactors and for understanding how methanogenic communities will respond to environmental perturbations.
format article
author Masahiko Morita
Nikhil S. Malvankar
Ashley E. Franks
Zarath M. Summers
Ludovic Giloteaux
Amelia E. Rotaru
Camelia Rotaru
Derek R. Lovley
author_facet Masahiko Morita
Nikhil S. Malvankar
Ashley E. Franks
Zarath M. Summers
Ludovic Giloteaux
Amelia E. Rotaru
Camelia Rotaru
Derek R. Lovley
author_sort Masahiko Morita
title Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
title_short Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
title_full Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
title_fullStr Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
title_full_unstemmed Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
title_sort potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
publisher American Society for Microbiology
publishDate 2011
url https://doaj.org/article/040699f9c6ea499abe30302bec0d9a8f
work_keys_str_mv AT masahikomorita potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT nikhilsmalvankar potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT ashleyefranks potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT zarathmsummers potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT ludovicgiloteaux potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT ameliaerotaru potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT cameliarotaru potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
AT derekrlovley potentialfordirectinterspecieselectrontransferinmethanogenicwastewaterdigesteraggregates
_version_ 1718427806381113344