A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations
The river stage–discharge relationship has an important impact on modeling, planning, and management of river basins and water resources. In this study, the capability of the Gaussian Process Regressions (GPR) kernel-based approach was assessed in predicting the daily river stage–discharge (RSD) rel...
Guardado en:
Autores principales: | Kiyoumars Roushangar, Masoumeh Chamani, Roghayeh Ghasempour, Hazi Mohammad Azamathulla, Farhad Alizadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/041be1ee94714725a9bef2be425a3e42 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Suspended sediment load prediction in consecutive stations of river based on ensemble pre-post-processing kernel based approaches
por: Roghayeh Ghasempour, et al.
Publicado: (2021) -
EEMD- and VMD-based hybrid GPR models for river streamflow point and interval predictions
por: Roghayeh Ghasempour, et al.
Publicado: (2021) -
The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Predictive modelling of the stage–discharge relationship using Gene-Expression Programming
por: Prashant Birbal, et al.
Publicado: (2021) -
Interaction of hydro-socio-technology-knowledge indicators in integrated water resources management using soft-computing techniques
por: Masoumeh Zeinali, et al.
Publicado: (2021)