Visualizing Energy Landscapes through Manifold Learning
Energy landscapes provide a conceptual framework for structure prediction, and a detailed understanding of their topological features is necessary to develop efficient methods for their exploration. The ability to visualize these surfaces is essential, but the high dimensionality of the correspondin...
Guardado en:
Autores principales: | Benjamin W. B. Shires, Chris J. Pickard |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/042cc5d208404eca9d4c0e0168cbf0ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
por: Sebastian Goldt, et al.
Publicado: (2020) -
Fracton Models on General Three-Dimensional Manifolds
por: Wilbur Shirley, et al.
Publicado: (2018) -
Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits
por: Mohammadsadegh Khazali, et al.
Publicado: (2020) -
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
por: Viktoria Schuster, et al.
Publicado: (2021) -
Rethinking Mean-Field Glassy Dynamics and Its Relation with the Energy Landscape: The Surprising Case of the Spherical Mixed p-Spin Model
por: Giampaolo Folena, et al.
Publicado: (2020)