Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis

Sukhvir Wright et al. present a NMDAR antibody-induced model of encephalitis in rats and use in vitro, in vivo, and in silico electrophysiology to examine alterations in neural circuit behavior. Their results suggest that reduction of NMDARs leads to increased excitability and seizure activity, and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sukhvir K. Wright, Richard E. Rosch, Max A. Wilson, Manoj A. Upadhya, Divya R. Dhangar, Charlie Clarke-Bland, Tamara T. Wahid, Sumanta Barman, Norbert Goebels, Jakob Kreye, Harald Prüss, Leslie Jacobson, Danielle S. Bassett, Angela Vincent, Stuart D. Greenhill, Gavin L. Woodhall
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/044abfeed3bf450a87ab1e4b273bc087
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:044abfeed3bf450a87ab1e4b273bc087
record_format dspace
spelling oai:doaj.org-article:044abfeed3bf450a87ab1e4b273bc0872021-12-02T17:26:55ZMultimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis10.1038/s42003-021-02635-82399-3642https://doaj.org/article/044abfeed3bf450a87ab1e4b273bc0872021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02635-8https://doaj.org/toc/2399-3642Sukhvir Wright et al. present a NMDAR antibody-induced model of encephalitis in rats and use in vitro, in vivo, and in silico electrophysiology to examine alterations in neural circuit behavior. Their results suggest that reduction of NMDARs leads to increased excitability and seizure activity, and highlights the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.Sukhvir K. WrightRichard E. RoschMax A. WilsonManoj A. UpadhyaDivya R. DhangarCharlie Clarke-BlandTamara T. WahidSumanta BarmanNorbert GoebelsJakob KreyeHarald PrüssLeslie JacobsonDanielle S. BassettAngela VincentStuart D. GreenhillGavin L. WoodhallNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Sukhvir K. Wright
Richard E. Rosch
Max A. Wilson
Manoj A. Upadhya
Divya R. Dhangar
Charlie Clarke-Bland
Tamara T. Wahid
Sumanta Barman
Norbert Goebels
Jakob Kreye
Harald Prüss
Leslie Jacobson
Danielle S. Bassett
Angela Vincent
Stuart D. Greenhill
Gavin L. Woodhall
Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis
description Sukhvir Wright et al. present a NMDAR antibody-induced model of encephalitis in rats and use in vitro, in vivo, and in silico electrophysiology to examine alterations in neural circuit behavior. Their results suggest that reduction of NMDARs leads to increased excitability and seizure activity, and highlights the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.
format article
author Sukhvir K. Wright
Richard E. Rosch
Max A. Wilson
Manoj A. Upadhya
Divya R. Dhangar
Charlie Clarke-Bland
Tamara T. Wahid
Sumanta Barman
Norbert Goebels
Jakob Kreye
Harald Prüss
Leslie Jacobson
Danielle S. Bassett
Angela Vincent
Stuart D. Greenhill
Gavin L. Woodhall
author_facet Sukhvir K. Wright
Richard E. Rosch
Max A. Wilson
Manoj A. Upadhya
Divya R. Dhangar
Charlie Clarke-Bland
Tamara T. Wahid
Sumanta Barman
Norbert Goebels
Jakob Kreye
Harald Prüss
Leslie Jacobson
Danielle S. Bassett
Angela Vincent
Stuart D. Greenhill
Gavin L. Woodhall
author_sort Sukhvir K. Wright
title Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis
title_short Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis
title_full Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis
title_fullStr Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis
title_full_unstemmed Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis
title_sort multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of nmdar antibody-mediated encephalitis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/044abfeed3bf450a87ab1e4b273bc087
work_keys_str_mv AT sukhvirkwright multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT richarderosch multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT maxawilson multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT manojaupadhya multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT divyardhangar multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT charlieclarkebland multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT tamaratwahid multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT sumantabarman multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT norbertgoebels multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT jakobkreye multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT haraldpruss multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT lesliejacobson multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT daniellesbassett multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT angelavincent multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT stuartdgreenhill multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
AT gavinlwoodhall multimodalelectrophysiologicalanalysesrevealthatreducedsynapticexcitatoryneurotransmissionunderliesseizuresinamodelofnmdarantibodymediatedencephalitis
_version_ 1718380772010754048