Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite
Nowadays, research studies about optimal application of natural resources in products manufacturing instead of fossil and non-renewable resources are of utmost and ever growing importance. Cellulosic resources as the future reliance of Green products and also mineral mines as plenty, cheap and avail...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Regional Information Center for Science and Technology (RICeST)
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/044ee6d69dee4abcabcdbd037c010733 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:044ee6d69dee4abcabcdbd037c010733 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:044ee6d69dee4abcabcdbd037c0107332021-12-02T02:20:06ZEffect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite1735-09132383-112X10.22092/ijwpr.2018.120396.1457https://doaj.org/article/044ee6d69dee4abcabcdbd037c0107332018-11-01T00:00:00Zhttp://ijwpr.areeo.ac.ir/article_116675_6787dd9a768d97446805d731ecd5906b.pdfhttps://doaj.org/toc/1735-0913https://doaj.org/toc/2383-112XNowadays, research studies about optimal application of natural resources in products manufacturing instead of fossil and non-renewable resources are of utmost and ever growing importance. Cellulosic resources as the future reliance of Green products and also mineral mines as plenty, cheap and available materials, especially in Iran, are appropriate options for various products developing. Then, effects of cellulosic fibers and Rockwool fibers (0.25% and 0.5%) in the absence and presence (0.1% and 0.2%) of nano bentonite on conventional and specific properties of Epoxy composite were evaluated. Tensile strength (47.9 MPa), modulus of rupture (86.3 MPa) and modulus of elasticity (2100 MPa) for the mineral fiber/epoxy composite and bentonite/epoxy nanocomposite were higher than the cellulosic fiber/epoxy composite. However, cellulosic fiber/epoxy composite showed higher energy absorption of the ballistic impact with lesser damage area caused by the impact than rockwool/epoxy composite which provide better protection against the ballistic impact. In the presence of nano bentonite particles into the epoxy resin context, rupture and elasticity moduli and tensile strength were dependent on the type and amounts of the additives with superiority of the mineral fibres/epoxy nanocomposite than the cellulosic fibers ones. In contrast, the composites energy absorption caused by the ballistic impact and its damaged area were more successful and favorable in cellulosic fibers than the mineral ones. Somehow that the highest absorbed energy of ballistic impact (60.7 J) and the least damaged area (10.7 cm2) were achieved by the highest application of cellulosic fibers (0.5%) and nano-bentonite (0.2%).Ashkaan KeshaavarzHossein Jalali TorshiziFaranak MohamadkazemiMojtaba KooshaRegional Information Center for Science and Technology (RICeST)articleCellulosic fibersMineral fibersBallistic impactnanocomposite propertiesForestrySD1-669.5FAتحقیقات علوم چوب و کاغذ ایران, Vol 33, Iss 3, Pp 347-358 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
FA |
topic |
Cellulosic fibers Mineral fibers Ballistic impact nanocomposite properties Forestry SD1-669.5 |
spellingShingle |
Cellulosic fibers Mineral fibers Ballistic impact nanocomposite properties Forestry SD1-669.5 Ashkaan Keshaavarz Hossein Jalali Torshizi Faranak Mohamadkazemi Mojtaba Koosha Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite |
description |
Nowadays, research studies about optimal application of natural resources in products manufacturing instead of fossil and non-renewable resources are of utmost and ever growing importance. Cellulosic resources as the future reliance of Green products and also mineral mines as plenty, cheap and available materials, especially in Iran, are appropriate options for various products developing. Then, effects of cellulosic fibers and Rockwool fibers (0.25% and 0.5%) in the absence and presence (0.1% and 0.2%) of nano bentonite on conventional and specific properties of Epoxy composite were evaluated. Tensile strength (47.9 MPa), modulus of rupture (86.3 MPa) and modulus of elasticity (2100 MPa) for the mineral fiber/epoxy composite and bentonite/epoxy nanocomposite were higher than the cellulosic fiber/epoxy composite. However, cellulosic fiber/epoxy composite showed higher energy absorption of the ballistic impact with lesser damage area caused by the impact than rockwool/epoxy composite which provide better protection against the ballistic impact. In the presence of nano bentonite particles into the epoxy resin context, rupture and elasticity moduli and tensile strength were dependent on the type and amounts of the additives with superiority of the mineral fibres/epoxy nanocomposite than the cellulosic fibers ones. In contrast, the composites energy absorption caused by the ballistic impact and its damaged area were more successful and favorable in cellulosic fibers than the mineral ones. Somehow that the highest absorbed energy of ballistic impact (60.7 J) and the least damaged area (10.7 cm2) were achieved by the highest application of cellulosic fibers (0.5%) and nano-bentonite (0.2%). |
format |
article |
author |
Ashkaan Keshaavarz Hossein Jalali Torshizi Faranak Mohamadkazemi Mojtaba Koosha |
author_facet |
Ashkaan Keshaavarz Hossein Jalali Torshizi Faranak Mohamadkazemi Mojtaba Koosha |
author_sort |
Ashkaan Keshaavarz |
title |
Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite |
title_short |
Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite |
title_full |
Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite |
title_fullStr |
Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite |
title_full_unstemmed |
Effect of Cellulosic and Rockwool Fibres on Mechanical strengths and Ballistic Impact of Epoxy-bentonite NanoComposite |
title_sort |
effect of cellulosic and rockwool fibres on mechanical strengths and ballistic impact of epoxy-bentonite nanocomposite |
publisher |
Regional Information Center for Science and Technology (RICeST) |
publishDate |
2018 |
url |
https://doaj.org/article/044ee6d69dee4abcabcdbd037c010733 |
work_keys_str_mv |
AT ashkaankeshaavarz effectofcellulosicandrockwoolfibresonmechanicalstrengthsandballisticimpactofepoxybentonitenanocomposite AT hosseinjalalitorshizi effectofcellulosicandrockwoolfibresonmechanicalstrengthsandballisticimpactofepoxybentonitenanocomposite AT faranakmohamadkazemi effectofcellulosicandrockwoolfibresonmechanicalstrengthsandballisticimpactofepoxybentonitenanocomposite AT mojtabakoosha effectofcellulosicandrockwoolfibresonmechanicalstrengthsandballisticimpactofepoxybentonitenanocomposite |
_version_ |
1718402508439683072 |