The progression of disorder-specific brain pattern expression in schizophrenia over 9 years
Abstract Age plays a crucial role in the performance of schizophrenia vs. controls (SZ-HC) neuroimaging-based machine learning (ML) models as the accuracy of identifying first-episode psychosis from controls is poor compared to chronic patients. Resolving whether this finding reflects longitudinal p...
Guardado en:
Autores principales: | Johannes Lieslehto, Erika Jääskeläinen, Vesa Kiviniemi, Marianne Haapea, Peter B. Jones, Graham K. Murray, Juha Veijola, Udo Dannlowski, Dominik Grotegerd, Susanne Meinert, Tim Hahn, Anne Ruef, Matti Isohanni, Peter Falkai, Jouko Miettunen, Dominic B. Dwyer, Nikolaos Koutsouleris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0450943ac8214069a14c3083b21b944e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Work-related risk factors for ulnar nerve entrapment in the Northern Finland Birth Cohort of 1966
por: Laura Miettinen, et al.
Publicado: (2021) -
Vuosisata Lapin metsäopetusta
por: Matti Palo, et al.
Publicado: (2007) -
PHOTONAI-A Python API for rapid machine learning model development.
por: Ramona Leenings, et al.
Publicado: (2021) -
Multimodal brain imaging with magnetoencephalography: A method for measuring blood pressure and cardiorespiratory oscillations
por: Teemu Myllylä, et al.
Publicado: (2017) -
The variability of functional MRI brain signal increases in Alzheimer's disease at cardiorespiratory frequencies
por: Timo Tuovinen, et al.
Publicado: (2020)