Evaluation of the feasibility of explainable computer-aided detection of cardiomegaly on chest radiographs using deep learning
Abstract We examined the feasibility of explainable computer-aided detection of cardiomegaly in routine clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) mo...
Guardado en:
Autores principales: | Mu Sook Lee, Yong Soo Kim, Minki Kim, Muhammad Usman, Shi Sub Byon, Sung Hyun Kim, Byoung Il Lee, Byoung-Dai Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/045bddf4643c4bf69c3789b38e685aee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A lady with chest pain: Is there a clue in the chest radiograph?
por: Deepanjan Bhattacharya, et al.
Publicado: (2021) -
The clinical associations with cardiomegaly in patients undergoing evaluation for pulmonary hypertension
por: Benjamin Daines, et al.
Publicado: (2021) -
An Overview of Deep Learning Approaches in Chest Radiograph
por: Shazia Anis, et al.
Publicado: (2020) -
Chest Radiographs and CT Findings during Healthcare Workers’ Tuberculosis Screening Using Interferon- Gamma Release Assay: Retrospective Observational Study
por: Ye Ra Choi, et al.
Publicado: (2021) -
Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.
por: Yiyun Chen, et al.
Publicado: (2021)