Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy
In sensor-based human activity recognition, many methods based on convolutional neural networks (CNNs) have been proposed. In the typical CNN-based activity recognition model, each class is treated independently of others. However, actual activity classes often have hierarchical relationships. It is...
Guardado en:
Autores principales: | Kazuma Kondo, Tatsuhito Hasegawa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/046a63cd506442e79e4b9e3760ba9eab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Live Spoofing Detection for Automatic Human Activity Recognition Applications
por: Viktor Dénes Huszár, et al.
Publicado: (2021) -
A CSI-Based Human Activity Recognition Using Deep Learning
por: Parisa Fard Moshiri, et al.
Publicado: (2021) -
A Deep Learning Based Approach for Localization and Recognition of Pakistani Vehicle License Plates
por: Umair Yousaf, et al.
Publicado: (2021) -
Towards a Clustering Guided Hierarchical Framework for Sensor-Based Activity Recognition
por: Aiguo Wang, et al.
Publicado: (2021) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
por: Faizan Saleem, et al.
Publicado: (2021)