Statistical mechanics for metabolic networks during steady state growth

Single cell growth rate variability has been difficult to understand. Here, the authors apply a generalization of flux balance analysis to single cells based on maximum entropy modeling, and find that growth rate fluctuations of E. coli reflect metabolic flux variability and growth sub-optimality, i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele De Martino, Anna MC Andersson, Tobias Bergmiller, Călin C. Guet, Gašper Tkačik
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/047a842e2a584521b3b1c31d7ce5b03a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single cell growth rate variability has been difficult to understand. Here, the authors apply a generalization of flux balance analysis to single cells based on maximum entropy modeling, and find that growth rate fluctuations of E. coli reflect metabolic flux variability and growth sub-optimality, in turn highlighting information costs for growth optimization.