Statistical mechanics for metabolic networks during steady state growth

Single cell growth rate variability has been difficult to understand. Here, the authors apply a generalization of flux balance analysis to single cells based on maximum entropy modeling, and find that growth rate fluctuations of E. coli reflect metabolic flux variability and growth sub-optimality, i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele De Martino, Anna MC Andersson, Tobias Bergmiller, Călin C. Guet, Gašper Tkačik
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/047a842e2a584521b3b1c31d7ce5b03a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:047a842e2a584521b3b1c31d7ce5b03a
record_format dspace
spelling oai:doaj.org-article:047a842e2a584521b3b1c31d7ce5b03a2021-12-02T15:34:26ZStatistical mechanics for metabolic networks during steady state growth10.1038/s41467-018-05417-92041-1723https://doaj.org/article/047a842e2a584521b3b1c31d7ce5b03a2018-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05417-9https://doaj.org/toc/2041-1723Single cell growth rate variability has been difficult to understand. Here, the authors apply a generalization of flux balance analysis to single cells based on maximum entropy modeling, and find that growth rate fluctuations of E. coli reflect metabolic flux variability and growth sub-optimality, in turn highlighting information costs for growth optimization.Daniele De MartinoAnna MC AnderssonTobias BergmillerCălin C. GuetGašper TkačikNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Daniele De Martino
Anna MC Andersson
Tobias Bergmiller
Călin C. Guet
Gašper Tkačik
Statistical mechanics for metabolic networks during steady state growth
description Single cell growth rate variability has been difficult to understand. Here, the authors apply a generalization of flux balance analysis to single cells based on maximum entropy modeling, and find that growth rate fluctuations of E. coli reflect metabolic flux variability and growth sub-optimality, in turn highlighting information costs for growth optimization.
format article
author Daniele De Martino
Anna MC Andersson
Tobias Bergmiller
Călin C. Guet
Gašper Tkačik
author_facet Daniele De Martino
Anna MC Andersson
Tobias Bergmiller
Călin C. Guet
Gašper Tkačik
author_sort Daniele De Martino
title Statistical mechanics for metabolic networks during steady state growth
title_short Statistical mechanics for metabolic networks during steady state growth
title_full Statistical mechanics for metabolic networks during steady state growth
title_fullStr Statistical mechanics for metabolic networks during steady state growth
title_full_unstemmed Statistical mechanics for metabolic networks during steady state growth
title_sort statistical mechanics for metabolic networks during steady state growth
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/047a842e2a584521b3b1c31d7ce5b03a
work_keys_str_mv AT danieledemartino statisticalmechanicsformetabolicnetworksduringsteadystategrowth
AT annamcandersson statisticalmechanicsformetabolicnetworksduringsteadystategrowth
AT tobiasbergmiller statisticalmechanicsformetabolicnetworksduringsteadystategrowth
AT calincguet statisticalmechanicsformetabolicnetworksduringsteadystategrowth
AT gaspertkacik statisticalmechanicsformetabolicnetworksduringsteadystategrowth
_version_ 1718386820080730112