Causal linkage between adult height and kidney function: An integrated population-scale observational analysis and Mendelian randomization study.

As adult height is linked to various health outcomes, further investigation of its causal effects on kidney function later in life is warranted. This study involved a cross-sectional observational analysis and summary-level Mendelian randomization (MR) analysis. First, the observational association...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sehoon Park, Soojin Lee, Yaerim Kim, Yeonhee Lee, Min Woo Kang, Kwangsoo Kim, Yong Chul Kim, Seung Seok Han, Hajeong Lee, Jung Pyo Lee, Kwon Wook Joo, Chun Soo Lim, Yon Su Kim, Dong Ki Kim
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/047f1342cd204755b42e68cf292be110
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:As adult height is linked to various health outcomes, further investigation of its causal effects on kidney function later in life is warranted. This study involved a cross-sectional observational analysis and summary-level Mendelian randomization (MR) analysis. First, the observational association between height and estimated GFR determined by creatinine (eGFRcreatinine) or cystatin C (eGFRcystatinC) was investigated in 467,182 individuals aged 40-69 using UK Biobank. Second, the genetic instrument for adult height, as reported by the GIANT consortium, was implemented, and summary-level MR of eGFRcreatinine and CKDcreatinine in a CKDGen genome-wide association study was performed (N = 567,460), with multivariable MR being adjusted for the effects of genetic predisposition on body mass index. To replicate the findings, additional two-sample MR using the summary statistics of eGFRcystatinC and CKDcystatinC in UK Biobank was performed (N = 321,405). In observational analysis, adult height was inversely associated with both eGFRcreatinine (per 1 SD, adjusted beta -1.039, standard error 0.129, P < 0.001) and eGFRcystatinC (adjusted beta -1.769, standard error 0.161, P < 0.001) in a multivariable model adjusted for clinicodemographic, anthropometric, metabolic, and social factors. Moreover, multivariable summary-level MR showed that a taller genetically predicted adult height was causally linked to a lower log-eGFRcreatinine (adjusted beta -0.007, standard error 0.001, P < 0.001) and a higher risk of CKDcreatinine (adjusted beta 0.083, standard error 0.019, P < 0.001). Other pleiotropy-robust sensitivity MR analysis results supported the findings. In addition, similar results were obtained by two-sample MR of eGFRcystatinC (adjusted beta -1.303, standard error 0.140, P < 0.001) and CKDcystatinC (adjusted beta 0.153, standard error 0.025, P < 0.001) in UK Biobank. In conclusion, the results of this study suggest that a taller adult height is causally linked to worse kidney function in middle-aged to elderly individuals, independent of the effect of body mass index.