Presenting machine learning model information to clinical end users with model facts labels
There is tremendous enthusiasm surrounding the potential for machine learning to improve medical prognosis and diagnosis. However, there are risks to translating a machine learning model into clinical care and clinical end users are often unaware of the potential harm to patients. This perspective p...
Guardado en:
Autores principales: | Mark P. Sendak, Michael Gao, Nathan Brajer, Suresh Balu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04a32595eab3442b8044b66e5a84a0f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Beyond performance metrics: modeling outcomes and cost for clinical machine learning
por: James A. Diao, et al.
Publicado: (2021) -
“”: A qualitative study exploring user and non-user's perceptions of wearable activity trackers
por: Katie Burford, et al.
Publicado: (2021) -
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
por: Simon Meyer Lauritsen, et al.
Publicado: (2021) -
New machine learning model predicts who may benefit most from COVID-19 vaccination
por: Leia Wedlund, et al.
Publicado: (2021) -
A simulation-based evaluation of machine learning models for clinical decision support: application and analysis using hospital readmission
por: Velibor V. Mišić, et al.
Publicado: (2021)