Presenting machine learning model information to clinical end users with model facts labels

There is tremendous enthusiasm surrounding the potential for machine learning to improve medical prognosis and diagnosis. However, there are risks to translating a machine learning model into clinical care and clinical end users are often unaware of the potential harm to patients. This perspective p...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Mark P. Sendak, Michael Gao, Nathan Brajer, Suresh Balu
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Accès en ligne:https://doaj.org/article/04a32595eab3442b8044b66e5a84a0f7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!