Dielectric properties of complex magnetic field induced states in PbCuSO4(OH)2
Abstract Spin spirals, which coexist with collinear spin order in linarite PbCuSO4(OH)2, indicate electrical polarisation textures of spin-multipolar phases. We derive experimental evidence by a detailed investigation of the magnetic-field dependent dielectric and electric polarization properties at...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04b5c917bcfd405dba94498e70d50591 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Spin spirals, which coexist with collinear spin order in linarite PbCuSO4(OH)2, indicate electrical polarisation textures of spin-multipolar phases. We derive experimental evidence by a detailed investigation of the magnetic-field dependent dielectric and electric polarization properties at low temperatures. Linarite exhibits a quasi-one-dimensional frustrated S = ½ spin chain, which forms 3D spin-spiral order in zero magnetic field for T < 2.85 K. Recently, due to the monoclinic lattice of linarite with CuO2 ribbon chains, complex magnetic field induced states were found. These spin-multipolar phases, which compete with spin-density waves at low magnetic fields, exist in close vicinity to the transition from the spin spiral into field induced spin polarized state. Via antisymmetric Dzyaloshinskii-Moriya interaction spin-driven ferroelectricity develops in the spin-spirals state. Via electric polarization measurements this allows to prove the transitions into complex magnetic field induced phases. Thorough analyses of the temperature and magnetic field dependent dielectric properties of a naturally grown single crystalline sample provide a detailed (T,H) phase diagrams for the three different crystallographic directions. |
---|