Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei

Abstract Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kirsten N. Fossum, Jurgita Ovadnevaite, Darius Ceburnis, Manuel Dall’Osto, Salvatore Marullo, Marco Bellacicco, Rafel Simó, Dantong Liu, Michael Flynn, Andreas Zuend, Colin O’Dowd
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/04b70a48e6854ed0b34854c3c455ac16
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:04b70a48e6854ed0b34854c3c455ac16
record_format dspace
spelling oai:doaj.org-article:04b70a48e6854ed0b34854c3c455ac162021-12-02T15:08:36ZSummertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei10.1038/s41598-018-32047-42045-2322https://doaj.org/article/04b70a48e6854ed0b34854c3c455ac162018-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-32047-4https://doaj.org/toc/2045-2322Abstract Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s−1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%.Kirsten N. FossumJurgita OvadnevaiteDarius CeburnisManuel Dall’OstoSalvatore MarulloMarco BellaciccoRafel SimóDantong LiuMichael FlynnAndreas ZuendColin O’DowdNature PortfolioarticlePeak SupersaturationAerosol PopulationCloud DropletsScanning Mobility Particle Sizer (SMPS)Aitken ModeMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-14 (2018)
institution DOAJ
collection DOAJ
language EN
topic Peak Supersaturation
Aerosol Population
Cloud Droplets
Scanning Mobility Particle Sizer (SMPS)
Aitken Mode
Medicine
R
Science
Q
spellingShingle Peak Supersaturation
Aerosol Population
Cloud Droplets
Scanning Mobility Particle Sizer (SMPS)
Aitken Mode
Medicine
R
Science
Q
Kirsten N. Fossum
Jurgita Ovadnevaite
Darius Ceburnis
Manuel Dall’Osto
Salvatore Marullo
Marco Bellacicco
Rafel Simó
Dantong Liu
Michael Flynn
Andreas Zuend
Colin O’Dowd
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
description Abstract Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s−1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%.
format article
author Kirsten N. Fossum
Jurgita Ovadnevaite
Darius Ceburnis
Manuel Dall’Osto
Salvatore Marullo
Marco Bellacicco
Rafel Simó
Dantong Liu
Michael Flynn
Andreas Zuend
Colin O’Dowd
author_facet Kirsten N. Fossum
Jurgita Ovadnevaite
Darius Ceburnis
Manuel Dall’Osto
Salvatore Marullo
Marco Bellacicco
Rafel Simó
Dantong Liu
Michael Flynn
Andreas Zuend
Colin O’Dowd
author_sort Kirsten N. Fossum
title Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_short Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_full Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_fullStr Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_full_unstemmed Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_sort summertime primary and secondary contributions to southern ocean cloud condensation nuclei
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/04b70a48e6854ed0b34854c3c455ac16
work_keys_str_mv AT kirstennfossum summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT jurgitaovadnevaite summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT dariusceburnis summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT manueldallosto summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT salvatoremarullo summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT marcobellacicco summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT rafelsimo summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT dantongliu summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT michaelflynn summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT andreaszuend summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
AT colinodowd summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei
_version_ 1718388040860172288