Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
Abstract Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clo...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04b70a48e6854ed0b34854c3c455ac16 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:04b70a48e6854ed0b34854c3c455ac16 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:04b70a48e6854ed0b34854c3c455ac162021-12-02T15:08:36ZSummertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei10.1038/s41598-018-32047-42045-2322https://doaj.org/article/04b70a48e6854ed0b34854c3c455ac162018-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-32047-4https://doaj.org/toc/2045-2322Abstract Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s−1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%.Kirsten N. FossumJurgita OvadnevaiteDarius CeburnisManuel Dall’OstoSalvatore MarulloMarco BellaciccoRafel SimóDantong LiuMichael FlynnAndreas ZuendColin O’DowdNature PortfolioarticlePeak SupersaturationAerosol PopulationCloud DropletsScanning Mobility Particle Sizer (SMPS)Aitken ModeMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-14 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Peak Supersaturation Aerosol Population Cloud Droplets Scanning Mobility Particle Sizer (SMPS) Aitken Mode Medicine R Science Q |
spellingShingle |
Peak Supersaturation Aerosol Population Cloud Droplets Scanning Mobility Particle Sizer (SMPS) Aitken Mode Medicine R Science Q Kirsten N. Fossum Jurgita Ovadnevaite Darius Ceburnis Manuel Dall’Osto Salvatore Marullo Marco Bellacicco Rafel Simó Dantong Liu Michael Flynn Andreas Zuend Colin O’Dowd Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei |
description |
Abstract Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s−1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%. |
format |
article |
author |
Kirsten N. Fossum Jurgita Ovadnevaite Darius Ceburnis Manuel Dall’Osto Salvatore Marullo Marco Bellacicco Rafel Simó Dantong Liu Michael Flynn Andreas Zuend Colin O’Dowd |
author_facet |
Kirsten N. Fossum Jurgita Ovadnevaite Darius Ceburnis Manuel Dall’Osto Salvatore Marullo Marco Bellacicco Rafel Simó Dantong Liu Michael Flynn Andreas Zuend Colin O’Dowd |
author_sort |
Kirsten N. Fossum |
title |
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei |
title_short |
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei |
title_full |
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei |
title_fullStr |
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei |
title_full_unstemmed |
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei |
title_sort |
summertime primary and secondary contributions to southern ocean cloud condensation nuclei |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/04b70a48e6854ed0b34854c3c455ac16 |
work_keys_str_mv |
AT kirstennfossum summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT jurgitaovadnevaite summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT dariusceburnis summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT manueldallosto summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT salvatoremarullo summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT marcobellacicco summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT rafelsimo summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT dantongliu summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT michaelflynn summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT andreaszuend summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei AT colinodowd summertimeprimaryandsecondarycontributionstosouthernoceancloudcondensationnuclei |
_version_ |
1718388040860172288 |