Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full...
Guardado en:
Autores principales: | Antonio Garcia-Uceda, Raghavendra Selvan, Zaigham Saghir, Harm A. W. M. Tiddens, Marleen de Bruijne |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04be7a8e66d846138c66cbc7a117dc5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Creating a training set for artificial intelligence from initial segmentations of airways
por: Ivan Dudurych, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
por: Ching-Juei Yang, et al.
Publicado: (2021) -
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
por: Raabid Hussain, et al.
Publicado: (2021) -
Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network
por: Yasuhisa Kurata, et al.
Publicado: (2021)