Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks

Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Antonio Garcia-Uceda, Raghavendra Selvan, Zaigham Saghir, Harm A. W. M. Tiddens, Marleen de Bruijne
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/04be7a8e66d846138c66cbc7a117dc5e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!