Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees
Abstract Honeybees are essential pollinators of many agricultural crops and wild plants. However, the number of managed bee colonies has declined in some regions of the world over the last few decades, probably caused by a combination of factors including parasites, pathogens and pesticides. Exposur...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04bee98f916e43c9bf2490ab135abe9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:04bee98f916e43c9bf2490ab135abe9b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:04bee98f916e43c9bf2490ab135abe9b2021-12-02T13:24:13ZExposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees10.1038/s41598-021-86293-02045-2322https://doaj.org/article/04bee98f916e43c9bf2490ab135abe9b2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86293-0https://doaj.org/toc/2045-2322Abstract Honeybees are essential pollinators of many agricultural crops and wild plants. However, the number of managed bee colonies has declined in some regions of the world over the last few decades, probably caused by a combination of factors including parasites, pathogens and pesticides. Exposure to these diverse biotic and abiotic stressors is likely to trigger immune responses and stress pathways that affect the health of individual honeybees and hence their contribution to colony survival. We therefore investigated the effects of an orally administered bacterial pathogen (Pseudomonas entomophila) and low-dose xenobiotic pesticides on honeybee survival and intestinal immune responses. We observed stressor-dependent effects on the mean lifespan, along with the induction of genes encoding the antimicrobial peptide abaecin and the detoxification factor cytochrome P450 monooxygenase CYP9E2. The pesticides also triggered the immediate induction of a nitric oxide synthase gene followed by the delayed upregulation of catalase, which was not observed in response to the pathogen. Honeybees therefore appear to produce nitric oxide as a specific defense response when exposed to xenobiotic stimuli. The immunity-related and stress-response genes we tested may provide useful stressor-dependent markers for ecotoxicological assessment in honeybee colonies.Merle T. BartlingSusanne ThümeckeJosé Herrera RussertAndreas VilcinskasKwang-Zin LeeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Merle T. Bartling Susanne Thümecke José Herrera Russert Andreas Vilcinskas Kwang-Zin Lee Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
description |
Abstract Honeybees are essential pollinators of many agricultural crops and wild plants. However, the number of managed bee colonies has declined in some regions of the world over the last few decades, probably caused by a combination of factors including parasites, pathogens and pesticides. Exposure to these diverse biotic and abiotic stressors is likely to trigger immune responses and stress pathways that affect the health of individual honeybees and hence their contribution to colony survival. We therefore investigated the effects of an orally administered bacterial pathogen (Pseudomonas entomophila) and low-dose xenobiotic pesticides on honeybee survival and intestinal immune responses. We observed stressor-dependent effects on the mean lifespan, along with the induction of genes encoding the antimicrobial peptide abaecin and the detoxification factor cytochrome P450 monooxygenase CYP9E2. The pesticides also triggered the immediate induction of a nitric oxide synthase gene followed by the delayed upregulation of catalase, which was not observed in response to the pathogen. Honeybees therefore appear to produce nitric oxide as a specific defense response when exposed to xenobiotic stimuli. The immunity-related and stress-response genes we tested may provide useful stressor-dependent markers for ecotoxicological assessment in honeybee colonies. |
format |
article |
author |
Merle T. Bartling Susanne Thümecke José Herrera Russert Andreas Vilcinskas Kwang-Zin Lee |
author_facet |
Merle T. Bartling Susanne Thümecke José Herrera Russert Andreas Vilcinskas Kwang-Zin Lee |
author_sort |
Merle T. Bartling |
title |
Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
title_short |
Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
title_full |
Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
title_fullStr |
Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
title_full_unstemmed |
Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
title_sort |
exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/04bee98f916e43c9bf2490ab135abe9b |
work_keys_str_mv |
AT merletbartling exposuretolowdosesofpesticidesinducesanimmuneresponseandtheproductionofnitricoxideinhoneybees AT susannethumecke exposuretolowdosesofpesticidesinducesanimmuneresponseandtheproductionofnitricoxideinhoneybees AT joseherrerarussert exposuretolowdosesofpesticidesinducesanimmuneresponseandtheproductionofnitricoxideinhoneybees AT andreasvilcinskas exposuretolowdosesofpesticidesinducesanimmuneresponseandtheproductionofnitricoxideinhoneybees AT kwangzinlee exposuretolowdosesofpesticidesinducesanimmuneresponseandtheproductionofnitricoxideinhoneybees |
_version_ |
1718393072249733120 |