EpistoNet: an ensemble of Epistocracy-optimized mixture of experts for detecting COVID-19 on chest X-ray images
Abstract The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we pro...
Guardado en:
Autores principales: | Seyed Ziae Mousavi Mojab, Seyedmohammad Shams, Farshad Fotouhi, Hamid Soltanian-Zadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04cc48e64d5b4808832af9d829d17ca5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Epistocracy and democratic epistemology
por: Min John B.
Publicado: (2015) -
Why Not a Philosopher King? and Other Objections to Epistocracy
por: Dragan Kuljanin
Publicado: (2019) -
Pneumonia detection in chest X-ray images using an ensemble of deep learning models.
por: Rohit Kundu, et al.
Publicado: (2021) -
Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset
por: Khin Yadanar Win, et al.
Publicado: (2021) -
Localizing Epileptic Foci Using Simultaneous EEG-fMRI Recording: Template Component Cross-Correlation
por: Elias Ebrahimzadeh, et al.
Publicado: (2021)