EpistoNet: an ensemble of Epistocracy-optimized mixture of experts for detecting COVID-19 on chest X-ray images
Abstract The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we pro...
Enregistré dans:
Auteurs principaux: | Seyed Ziae Mousavi Mojab, Seyedmohammad Shams, Farshad Fotouhi, Hamid Soltanian-Zadeh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/04cc48e64d5b4808832af9d829d17ca5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Epistocracy and democratic epistemology
par: Min John B.
Publié: (2015) -
Why Not a Philosopher King? and Other Objections to Epistocracy
par: Dragan Kuljanin
Publié: (2019) -
Pneumonia detection in chest X-ray images using an ensemble of deep learning models.
par: Rohit Kundu, et autres
Publié: (2021) -
Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset
par: Khin Yadanar Win, et autres
Publié: (2021) -
Localizing Epileptic Foci Using Simultaneous EEG-fMRI Recording: Template Component Cross-Correlation
par: Elias Ebrahimzadeh, et autres
Publié: (2021)